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Abstract 
In previous tsunami disasters it was reported that many residents used vehicles to evacuate from the coast. 
Consequently traffic congestions delayed evacuation times reducing survival chances in the area. Similarly, when 
evacuating as pedestrian, safe evacuations can be compromised by overcrowding conditions due to high population 
concentration, narrow streets and limited space for mobility. Thus, finding the best evacuation route considering less 
congestion and higher chances to reach safe haven is critical for the evacuation process. 

We envision a future of smart and autonomous evacuations in a post-information age, where smart cities become fully 
interconnected and people or vehicles can be intelligently guided in real time with precise information aiming for an 
optimum behavior and a safe evacuation. 

With this in mind, we built a model of evacuation with limited evacuee decision-making, however with learning-skilled 
connections within the network that would guide the flow of evacuees in directions that result best to reduce congestion 
and increase the chances to survive. One can imagine also smart and interconnected digital tsunami sign boards placed 
at intersections guiding evacuees accordingly to current congestion conditions in the network. 

Here we used reinforcement learning to find the best policy (routing) constrained to low density in roads and successful 
guidance behavior of nodes in the network. 
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1. Introduction
Saving human lives in the case of a tsunami is the ultimate objective of disaster risk management. In this 
regard, one of the methods that is considered as the most important and effective is evacuation [1]. Thus, 
evacuation planning is one of the main activities conducted by local disaster managers and stakeholders. 
Unfortunately, In previous tsunami disasters it was reported that many residents used vehicles to evacuate 
from the coast and due to traffic congestions their evacuation was delayed leading to fatal outcomes. In small 
communities, were vehicles are seldom used in evacuation, pedestrian evacuations can also be compromised 
by overcrowding conditions due to high population concentration, narrow streets and limited space for 
mobility. Thus, finding the best evacuation route considering less congestion and higher chances to reach 
safe haven is critical for the evacuation process. 

In the future, when smart and autonomous vehicles can perform evacuations for us, when we reach the post-
information age, smart cities will become fully interconnected and people or vehicles can be intelligently 
guided in real time with precise information that leads the system to an optimum behavior and a safe 
evacuation. 

Preparing ourselves for such future, we built a model of evacuation with limited evacuee decision-making 
and highly learning-skilled connections in the road network that would guide the flow of evacuees in 
directions towards less congestion and higher chances to survive.  

We used reinforcement learning to find the best policy (routing) constrained to low density in roads and 
rewarding successful guidance. This paper reports on preliminary results and is organized as follows: a brief 
description of related work on the field, an introduction to the reinforcement learning framework and our 
evacuation model; the description of the numerical experiment and its results. Finally a discussion and 
conclusions on the current study. 

2. Related work
Reinforcement Learning (RL) has been applied in various fields for purposes related to this work. For 
instance, [2] applied reinforcement learning to let pedestrians in the simulation learn the crowd motion 
obtained from classified video data in order to navigate avoiding obstacles. The RL approach here is inserted 
in the evacuee agent architecture of path planning. In other words, the evacuee learn to assess the 
environment of crowd motion to then design his evacuation strategy and local collision avoidance behavior. 
In contrast, [3] used deep reinforcement learning to model the fire evacuation in a building. In this case, the 
also reward/penalize the evacuee agent based on the action taken and the condition of fire spreading. 
Similarly, [4] developed a model using RL for path selection in disaster response management. They looked 
for the best strategy to go from a rescue team location to an affected area through a safe and shortest path. 
The RL algorithm was suitable to this case due to its ability to interact with the environment without needing 
any prior knowledge of it. 

To the authors’ knowledge, most of the efforts to incorporate RL in the evacuation modeling are 
concentrated on incorporating the learning process within the agent decision-making. This is understandable, 
since in multi-agent systems and evacuation modeling, intelligent and sophisticated behavior are necessary 
for the agent architecture when autonomous decision-making is expected. On the other hand, related work to 
our particular approach has not been found in the literature of evacuation modeling. Nevertheless, studies 
using a similar philosophy to ours can be found in the information science discipline. For instance, [5] 
developed a RL module embedded in nodes of a communication network to learn a routing policy for 
transmission of packets of information. Also, [6]  compared this approach to shortest path algorithms and 
found that adaptive (learning) approaches perform better than tradition non-adaptive approaches. 
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3. Model framework 
3.1 Reinforcement Learning Model 
The RL deals with the policies of an agent to perform decisions/actions. The best policy is learnt from the 
interaction agent-environment. The environment refers to everything outside the agent that interacts with 
him. The agent knowledge is reinforced through more interaction with the environment. Consider the term 
state as all the information that the agent perceive from the environment at certain location and/or instant. In 
order to assess a policy, the parameter called reward is introduced to quantify the effect of an agent’s action.  

 
Fig. 1 – The agent from a Reinforcement Learning point of view. Image from [7]. 

 

Given these previous definitions, the mathematical structure/model of the agent-environment 
interaction is depicted in Fig. 1. It is described as a finite Markov Decision problem, from which the 
interaction is performed within discrete time steps. At certain instant t, the agent chooses a policy associated 
to the state st and performs an action At. The referred action will have repercussions in the environment, and 
consequently, it will influence the state at the instant t+1, st+1. Whether the new state is positive or negative 
to the agent’s main objective, it is quantified with a reward rt+1. The RL approach searches for the policy that 
gives the largest long-term reward, Rt, referred also as return and it is defined as follows: 

 𝑅" = $𝛾&𝑟"(&()

*

&+,

 (1) 

where 𝛾 is a parameter, 0 ≤ 𝛾 ≤ 1, called discount rate; T denotes the end of the time from which interaction 
agent-environment finishes. It can be set to ∞, which will only converge to 𝑅* if 𝛾 < 1. The best policy is 
chosen using the following optimization problem: 

 max
5

𝑞5(𝑠, 𝑎) (2) 

 𝑞5(𝑠, 𝑎) = 𝐸5{𝑅"|𝑠" = 𝑠, 𝑎" = 𝑎} (3) 

where 𝑞5(𝑠, 𝑎), referred as value function, is the expected return given that 𝑠" = 𝑠  and 𝑎" = 𝑎 . Further 
details on how to solve Eq. (2) can be found in [7] and summarized in [8]. Here, we will describe the RL 
model accordingly to the aforementioned reference literature. 

 

3.2 Tsunami Evacuation Model 
The model developed in this study is based on the Monte Carlo method within the RL approach (MC-RL). 
Here, we estimate value functions and discover an optimal policy for the system through simulated 
experience. The system is based on a given road network G(n,m) with n nodes and m edges or links. Each 
node represents an intersection of two or more links (roads) or the endpoint of a boundary link (See Fig. 2). 
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Fig. 2 – Example of a road network graph used in this study. The blue points are nodes and the blue lines are 
the links. The background image was retrieved from the Open Street Map archive. 

Contrarily to other RL approaches in disaster research where the machine learning-based algorithm is located 
at the core of the moving and thinking agent (i.e. the robot, the evacuee, the responder or rescue team, etc.) 
[9]; in this case, we aim for the environment (the network) to be the smartest in the system and guide the 
evacuation process. Therefore, we set the nodes of the network as the learning agent – from here on the node 
agent - and the evacuee as part of the environment that imposes the constraints on the learning and the 
reward process for each node. 

Let us explain in detail the components of the model. As stated before, the graph or network is the main 
component, and the population that consists on a fix number of evacuees trying to reach any available shelter 
is only part of the environment. Population spatial distribution is based on census data with original 
resolution of 100m grid. These data are disaggregated into the buildings and residential houses located 
within its corresponding grid. Finally, the individual population is reaggregated into the nearest node agent 
which is assumed as the initial position for evacuation. 

As for the timing of evacuation, a Rayleigh distribution is used [10] to randomly allocated a starting time to 
each evacuee agent. When the model starts its clock, the evacuee agent will assess its timing for evacuation 
and when the time comes will start moving towards the next node. 

We need to stress here that our model does not account for any decision-making by the evacuee agent nor 
any global knowledge of the entire system. The evacuee agent just follows the orders of the node agent. 

In addition, crowding congestion is taken into account for speed adjustment based on values from [11]. 
Based on the graph of Figure 3, we divided three stages of level of congestion based on the density of 
evacuees at a link. Each level defines the moving speed in m/s that the evacuee will have at the entrance of a 
new link towards the next node. At the current stage, the moving speed is constant throughout the link and 
update again based on the information provided by the next node agent. 
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Fig. 3 – Moving speed and three levels of density reflecting crowding congestion conditions. 

 

In the RL approach the main features of the environment are: (i) objective; (ii) state; (iii) action; (iv) return; 
(v) termination [12]. In our case we can describe these as follows: 

• Objective: Guide evacuees at each node to the best direction to arrive safely at a shelter within the 
available time. 

• State: An array of variable length which represents the density level at each link connected to the 
agent node. For example, [0,2,1] represents a node with three links with each of them at a 0, 2 and 1 
level of crowd condition. The levels are defined in Fig. 3. 

• Action: Selection of the next node based on the Q(n) matrix. For example, [0.50, 0.60, 0.75] 
represents the action-values where if an exploit behavior is selected, the maximum is chosen and 
therefore the evacuee agent follows the third link direction. On the other hand if and explore 
behavior is selected, a random link direction is chosen and new possible routes might be found or 
ignored based on trial-and-error throughout the MC simulation. 

• Reward: No reward is given to the node/state within the episode; therefore the terminal rewards are 
also the returns.  

• Return: From all the evacuees that crossed a node-agent, a return of +1 for each person that arrives 
at a shelter; otherwise, a return of zero is assigned. +1 for every node/state visited by the evacuee 
agent who reached safe haven. This decision-rule is the consequence of using 𝛾 = 1 , and a 
reward/return 𝑟 = 1 only if the action makes a person arrives at a shelter, otherwise, a reward/return 
of zero is assigned.  

• Termination: A pre-set time T based on the expected tsunami arrival time. 

 

The process of MC-RL can be summarized in the following pseudocode (See Algorithm 1). A predefined 
number of simulations (N) is defined. Here the term simulation is used to refer to episodes or repetitions 
which are common argot within the RL and the Monte Carlo approaches, respectively. First, a State Matrix, 
called the Q(n) matrix is defined. Where, n is the current simulation number. The state matrix contains all the 
states experienced by the evacuee agents. Recall that a state perceived by a node agent in this context is the 
level of congestion at each link that connects to himself. This is the most important matrix. It stores the 
action-value functions (an value calculated from state experience and rewards), which is used to judge which 
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policy (next node to take) is the best option. Since Q(0) does not exist, unless a previous result is imported, 
the first state matrix is populated with random values. Otherwise the current Q matrix is imported from the 
previous simulation.  A number of steps per simulation defined by a parameter T, related to the arrival time 
of tsunami, are set. For each evacuee, at each time step, the individual start time of evacuation (STE) is 
verified. Recall that initially we have set on each evacuee agent a random value pooled from a Rayleigh 
distribution with a certain mean value. When the time t equals the STE of the evacuee, this is classified as a 
‘moving agent’ who consequently becomes a candidate for updating position and velocity in consecutive 
time steps. Finally, at time T the simulation stops and all evacuee agents who have reached safe haven 
reward the states visited in their path. 

 

 

At the end of an episode/simulation, the components of Q(n) are updated in the following form:  

 𝑄A,B ←
𝑄A,B ∙ 𝑁A + 𝑅
𝑁A + 1

=
𝑅 − 𝑄A,B
𝑁A + 1

+ 𝑄A,B (4) 

Where Qi,j is the component of  Q(n) matrix associated to a state i and an action j; Ni is the frequency or 
number of occurrences of rewards to this state; and R is the return value, in our case R=+1. Eq. (4) is 
performed for every node-agent and for every person that crossed it. The final step is to export the state 
matrix Q(n) of the current episode or simulation to become the input of a next run in the MC loop. Then, a 
subsequent episode will start learning from previous experiences already logged in the state matrix. 

In the next section a numerical experiment is presented to discuss the feasibility of using the MC-RL 
approach to optimize the evacuation process by guiding agents through directions with higher chance of 
survival. 
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4. Numerical experiments
4.1 Configuration
We first use the census data provided by the Statistical Bureau of Japan on a spatial resolution of 100m grid. 
These data are disaggregated following an iterative proportional fitting method were the re-aggregated sums 
of initial estimations of residents per households and in buildings are adjusted iteratively to fit the original 
data and ancillary data such as the number of households and its number of family members or gender within 
the same spatial cell. Figure. 4 illustrates the original data format in the left and the result of the 
disaggregation on the right. 

Fig. 4 – Population census data disaggregated into individuals at each residential building in the area of 
study. 

As for other parameters and settings in the experiment, these are detailed in Table 1. 

Parameter Value Unit Reference 

No. of Evacuee Agents 2,723 Pers. Census Data 

No. of Node Agents 240 Nodes Road Network Data 

No. of Links 312 Links Road Network Data 

Evacuee STE* R(t,7) min. Rayleigh Distribution [4] 

Simulation time 67 min. March 11, 2011 Japan Tsunami 
arrival time to the area 

Number of Repetitions 1,000 run 
Based on convergence of 
accumulated average values of 
evacuees in shelter per run 

*STE: Start Time of Evacuation

4.2 Results analysis 
The model was run 1,000 times to let the road network (node agents) to learn from positive outcomes and 
reinforce the guiding behavior on specific states. Figures 5 and 6 show the snapshots of the first and last run 
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in the MC-RL simulation and evidence the learning effect in evacuation clearance. Figure 7 shows the 
accumulated average number of survivors from available runs (in red) and the number of survivors per run 
(in gray). In this experiment a 90% of the time the node guides the evacuee towards the maximum Q value 
(the best policy) and the remaining 10% of the time it shows an aleatory direction to explore the 
environment. Such balance between exploiting and exploring behaviors leads to the outcome shown in the 
figures. 

 

t 
(min) 

First Run 
(n=1) 

Last Run 
(n=1,000) 

5 

  

15 

  
 

Fig. 5 – Snapshots of the first simulation and the 1,000th simulation at 5 and 15 minutes of evacuation 
process. Notice the lower congestion and use of alternative routes in the last run (right) compared to the first 
run (left) 
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t 
(min) 

First Run 
(n=1) 

Last Run 
(n=1,000) 

30 

  

60 

  
 

Fig. 6 – Snapshots of the first simulation and the 1,000th simulation at 15 and 30 minutes of evacuation 
process. Notice the lower congestion and use of alternative routes in the last run (right) compared to the first 
run (left). Also, the network has learned to guide evacuees faster with less congestion in the available time. 
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Fig. 7 – The number of survivors increments as the simulation runs progresses, This is, the network learns 
the best policy for each possible state and reinforces such guidance behavior. Finally a stable policy is found 
such that all evacuees can reach shelter in the available time. The gray line shows the survivors at each 
simulation while the red line shows the accumulated average of survivors from available runs. 

5. Discussion
Based on Figures 5 and 6, we can argue that the network is effectively learning from previous experience, 
since a better policy is found at the last run. In addition, it is worth notice that the algorithm does not lead to 
the shortest path as the solution for the evacuation process. Due to the architecture of the model, where the 
speed is controlled by the congestion condition, and the reward is related to arriving or not, indirectly, we are 
rewarding paths that lead to safe haven regardless these are fast, slow, long or short. In other words, the 
system is trying to take advantage as much as possible of all the options (paths) available when the state 
(congestion) suggests that the best option is a particular direction (next node), even if this is not in line with 
the shortest path route. 

We think this is optimum for a system of total compliance, meaning, where evacuees follow orders from 
nodes without hesitating or ignored them. As this might not be the real case in human behavior, it may be the 
condition of a futuristic evacuation where autonomous agents or robots will move based on a distributed 
coordination and organization looking for the optimum outcome for the system. Still, a long way forward in 
this regard is necessary to evaluate the efficiency, practicality, ethics and morality of such solutions. 
However, our cities are being developed based on interconnectivity, big data, technology and automation 
goals for everyday tasks. One of those tasks can be commuting or driving, therefore, a disaster mode 
behavior needs to be considered in advance.  

6. Conclusions
We have developed a model of evacuation that uses the reinforcement learning algorithm and the Monte 
Carlo simulation approach. Our novelty is the consideration of a smart network that can learn from trial and 
error or simulated experience, the best policy to guide evacuees towards safe haven. Preliminary results show 
promising outcomes, such as an effective learning process by the network, an optimum solution for 
evacuation of all population in the area of study, and a distributed evacuation using all possible paths in the 
road network, leading to less congestion and faster evacuation. Further experiments for verification and 
improvement of the current model are necessary, including the comparison with traditional evacuation 
simulation methods to shed lights on the efficiency and applicability of the algorithms to the evacuation 
problem. 
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