
17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

Paper N° C001328 

Registration Code: S-A02049

FUSION OF MODELING AND REMOTE SENSING FOR DAMAGE 
ESTIMATION 

L. Moya(1,2), E. Mas(3), S. Koshimura(4), F. Yamazaki(5), W. Liu(6), C. Geiß(7)

(1) Researcher, IRIDeS, Tohoku University, Japan, lmoyah@irides.tohoku.ac.jp
(2) Principal Investigator, CISMID, National University of Engineering, Peru, lmoyah@uni.pe
(3) Associate Professor, IRIDeS, Tohoku University, Japan, mas@irides.tohoku.ac.jp
(4) Professor, IRIDeS, Tohoku University, Japan, koshimura@irides.tohoku.ac.jp
(5) Research Fellow, National Research Institute for Earth Science and Disaster Resilience, Japan, fumio.yamazaki@bosai.go.jp
(6) Assistant Professor, Graduate School of Engineering, Chiba University, wen.liu@chiba-u.jp
(7) Researcher, German Remote Sensing Data Center, German Aerospace Center, Christian.Geiss@dlr.de

Abstract 
Disaster risk analysis involves a set of disaster events, their consequences, and their probabilities of occurrence over a 
defined period. The main, or traditional role of disaster risk is to serve as a guide for decisions about safety. Whether 
the infrastructure requires retrofitting or whether having insurance is cost-effective are such examples. An important 
stage in estimating the disaster risk is the estimation of damage as a function of the demand (i.e., ground motion for 
earthquake or inundation depth for tsunamis). These damage functions have been playing the main role in one of the 
recent trends. With the technological progress in instrumentation, numerical modeling and communication networks, in 
the aftermath of a large-scale disaster, it is possible to estimate a demand map in real/near-real time. Then, with the aid 
of the damage functions, an estimation of the damage map can be computed. However, with damage functions, we can 
only compute the probability that an asset is damaged. The best that can be done with such information is to report the 
expected amount of damaged assets within a given area. It is not possible to indicate which asset was damaged. A more 
realistic estimation of damage due to an arbitrary disaster can be obtained from remote sensing data, such as satellite 
images. With remote sensing data recorded after a disaster (images recorded before a disaster are usually available as 
well), the real effect of the disaster can be detected. However, the procedure is not straightforward. Usually, a set of 
features are computed from remote sensing data for each asset. Such features are used as input of a discriminant 
function that predicts whether the asset is damaged or not. The discriminant function is best calibrated using machine 
learning methods, but they require training data. Training data is very difficult to collect right after a disaster because all 
the efforts are focused on rescue and relief activities. In this paper we summarize the studies we have performed 
regarding the fusion of the two referred disciplines to implement a fully automatic damage mapping procedure.  
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1. Introduction 
The identification of damage to an urban area in the aftermath of a large-scale disaster is a critical work in 
emergency response and recovery activities. The more knowledge regarding the extent of affected areas, the 
better the decisions will be during the emergency. Currently, remote sensing is the main technology to 
retrieve the extent of the damage in the aftermath of a large-scale disaster [1]-[3]. The most efficient method 
to identify damage is the comparison of a pair of images recorded before (pre-event) and after (post-event) 
the disaster in mention, an approach usually referred to as change detection. If the acquisition date of both 
the pre-event and post-event images is close enough, changes observed between the images are assumed to 
be associated with the effects of the disaster. In order to identify changes, certain features are computed from 
the both images to measure the degree of similarity/change. The averaged pixel difference, the correlation 
coefficient, and the coherence are features frequently used. Among the tendencies to identify damage from 
remote sensing-based features is the search of discriminant functions that can produce damage maps with 
acceptable accuracy. Liu et al. [4] proposed a linear combination of the absolute value of the normalized 
difference of backscattering intensity and the correlation coefficient, introduced as z-factor, to discriminate 
changes between a pair of TerraSAR-X intensity images. Gokon et al. [5] proposed a damage function called 
𝐹"# that uses a mean value of correlation coefficient within an area defined by object-based analysis. It was 
later reported that the direct application of the z-factor and 𝐹"# function in microwave images of different 
spectral bands was not possible, and recalibration was first needed [6][7]. Karimzadeh and Matsuoka [8] 
proposed a discriminant function whose inputs are the coherence and the averaged difference of 
backscattering intensity computed over different polarizations. However, the proposed function was 
calibrated independently for Sentinel-1 and ALOS-2 microwave imagery, and later on, it was calibrated for 
COSMO-SkyMed imagery [9]. It is observed that proposing a fixed discriminant function is strongly 
constrained to specific set of features and specific type of remote sensing data.  

In order to overcome the pitfall referred above, the calibration of the discriminant function must be 
part of the processing-chain for damage mapping. Supervised machine learning algorithms were created for 
this kind of problem. Namely, supervised machine learning calibrates the discriminant function from limited 
but properly encoded training data. Wieland et al. [10] used the support vector machine (SVM) to calibrate 
discriminant functions from high-dimensional feature space and identified the affected area in Miyagi 
Prefecture due to the 2011 Tohoku earthquake-tsunami. Bai et al. [11] tested some deep neural networks for 
damage recognition using only a post-event microwave image. Moya et al. [12] used SVM to calibrate a 
discriminant function whose input is LiDAR-based features. Moya et al. [13] used SVM to calibrate a 
discriminant function whose input are three-dimensional texture features. Moya et al. [14] proposed a new 
feature, termed conditional coherence, and calibrated a discriminant function with one-class SVM that uses 
the conditional coherence as input to identify flooded areas in agricultural targets. As noted, the advantages 
of the use of machine learning algorithms is that (i) it is adaptable to arbitrary n-dimensional feature space, 
(ii) the type of sensor (i.e., microwave, optical, LiDAR data) is no longer relevant, and (iii) more complex 
discriminant function can be calibrated. However, supervised machine learning algorithms also exhibit a 
critical issue for damage mapping tasks: the need for training samples. The most accurate training data 
comes from field surveys, but in the aftermath of a large-scale disaster, the main efforts are focused on relief 
distribution and rescue activities. Usually, information regarding damage in the infrastructure is available 
after several weeks. Training data can be prepared from visual inspection of high-resolution optical images; 
however, it is time-consuming and may introduce biases. Most of the applications of machine learning 
algorithms referred previously used training data published many weeks, sometimes even months, after a 
certain disaster, and there are many more studies that exhibit the same issue. Namely, the use of training data 
that was not available right after the disaster. It is worth to point out that the scarce availability of training 
data has been observed in other applications of machine learning, and thus, some approaches have been 
proposed [15][16][17].  

In the field of risk analysis, damage mapping is estimated from statistical studies of the relation 
between a demand parameter and the damage level of a building with specific properties (i.e., material, 
construction year, etc.) [18]-[21]. The demand parameter denotes the intensity of the disaster experienced at 
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certain geolocation. The peak ground acceleration for earthquakes and the inundation depth for tsunamis are 
such examples of demand parameters. A fragility function is the result of the referred statistical studies, and 
thus, it expresses the relationship between the demand parameter and the probability that a certain damage 
level is reached or exceeded [21]. Recently, several real-time building damage mapping in terms of 
probabilities has been implemented [22]-[25]. Part of the success of the referred frameworks lies on the 
progress in instrumentation and numerical modeling of the demand parameter [26]-[30]. The limitation of 
this approach is that it provides the probability of damage to a building, rather than its actual damage 
situation. It has been used, though, to provide local aggregates.  

In this paper, we summarize our studies on the fusion of the two approaches, machine learning-remote 
sensing-based and probability-based damage mapping. We show that the fusion brings great benefits, such as 
the overcome of training data problem and the mapping of actual damage in near-real-time. The next chapter 
summarizes our first attempt of the fusion [31]. Chapter 3 reports the subsequent upgrade of the method [32]. 
Chapter 4 provides a glimpse of our current work. Finally, our conclusions are drawn in Chapter 5. 

2. Replacing training data with demand parameters and damage functions
Instead of using training data to calibrate a discriminant function, the demand parameter and fragility 
functions are used to impose a novel constraint. Fig. 1 shows the processing chain of the proposed damage 
mapping method, and the steps are described as follows: 

1. The satellite images are inserted into the system for a further analysis.
2. Feature extraction. Here the first database is prepared. The features are designed to detect changes

between the pre-event and post-event images. The features are computed for each building to be
analyzed. Fig. 1 shows a database with only two features (F1 and F2).

3. A discriminant function candidate is set. Fig. 1 shows a discriminant function drawn in the bi-
dimensional space. The application of the function candidate on the feature database will create a
damage scenario, hereafter referred to as the synthetic scenario.

4. An inventory of change/no-change samples is constructed from the synthetic scenario. Additionally,
the demand parameter at each sample building is collected from the demand parameter map.

5. The samples are grouped into bins by ranges of the demand parameter. For each bin, the ratio of
samples classified as changed (cr) and the averaged demand parameter are computed. Then, the level
of matching between cr and a fragility function is evaluated.

Fig. 1 – Schematic illustration of the flowchart of the proposed method. Source: [31]. 
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The parameters of the discriminant function are searched through brute force repeating steps 3-5 over 
a range of potential values. The performance of the method was evaluated in the case of the 2011 Tohoku-
Oki earthquake-tsunami. Fig. 2 depicts the demand parameter map (i.e., inundation depth in this case), the 
pre-event and post-event TerraSAR-X intensity images. Two features were computed from the images for 
each building: the correlation coefficient and the averaged difference of intensity. The proposed procedure 
was performed twice: one case using the fragility function proposed by Koshimura et al. [33], and the other 
case using the fragility function proposed by Supasri et al. [34]. Both fragility functions represent the 
relationship between the inundation depth and the probability that a building will be destroyed/washed away. 
In Fig. 3a, the solid blue lines represent the fragility functions used in the two cases, and the black points 
represent the cr values that best match the fragility functions. The bi-dimensional samples are shown in Fig 
3b, from which the samples colored red are classified as destroyed and the samples colored blue were 
classified as non-destroyed. Fig. 4 shows a closer look of the destroyed building map from surveyed data and 
that estimated by the proposed method. The results achieved an overall accuracy of 81.4%  and 84.9% using 
the fragility functions provided by Koshimura et al. [33] and Suppasri et al. [34], respectively. Further details 
of the proposed method can be found in [31]. 

 
Fig. 2 – Input data. (left) demand parameter map (inundation depth); (center) pre-event TerraSAR-X 

intensity image; (right) post-event TerraSAR-X intensity image 

 

(a) 

 

(b) 

Fig. 3 – (a) Ratio of destroyed buildings vs the inundation depth obtained from the results (dark dots), and 
the fragility functions used for the calibration of the discriminant functions (solid line). (b) Scatter plot of 
destroyed (red dots) and non-destroyed buildings (blue dots) according to the final discriminant function. 
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Fig. 4 – A closer look of the destroyed building map constructed from truth data and the proposed method. 

3. Logistic regression-based upgrade of the damage mapping method
3.1 Logistic regression classifier
A logistic regression classifier uses, as the name suggests, the logistic regression function to assign a label 
𝑧% ∈ 0,1  to a sample 𝑖 that is associated with a set of features stored in the vector 𝒙%: 

𝑃𝑟 𝑧% = 1|𝒙% = ℎ𝜽,23 𝒙% =
1

1 + 𝑒𝑥𝑝 −𝜽9𝒙% − 𝜃;
(1) 

where 𝒙 = 𝑥<, 𝑥=, … , 𝑥?  is a vector that contains the features of a sample (building), 𝜽 = 𝜃<, 𝜃=, … , 𝜃?  is 
a vector with the regression coefficients, 𝜃; is an intercept term, and 𝑃𝑟 𝑧% = 1|𝒙%  denotes the probability 
that 𝑧% = 1, given the feature vector 𝒙%. The discriminant function is then defined as: 

𝑓 𝒙% = 𝑧% =
0				𝑖𝑓		ℎ𝜽,23 𝒙% < 0.5	
1			𝑖𝑓			ℎ𝜽,23 𝒙% ≥ 0.5  (2) 

Note that the hyperplane 𝜽9𝒙% + 𝜃; = 0  defines a boundary that separates the vectors 𝒙%  with different 
labels. The unknowns 𝜽 and 𝜃; are calibrated using training samples in the following optimization problem: 

min
𝜽,23

𝐽 𝜽, 𝜃; (4) 

𝐽 𝜽, 𝜃; = −
1
𝑁

𝑧% ln ℎ𝜽,23 𝒙% + 1 − 𝑧% ln 1 − ℎ𝜽,23 𝒙%

L

%M<

(5) 

where N denotes the number of training samples. Note that the truth label of the training samples is assigned 
as 𝑧% in Eq. (5) in order to differentiate it from the label assigned from the discriminant function.  
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Fig. 5 – Linear discriminant function obtained using the fragility function of Koshimura et al. [33]. Left: 
scatter plot of the bi-dimensional samples that were destroyed by the tsunami. Center: scatter plot of the bi-
dimensional data that were not destroyed by the tsunami. Right: Variation of the cost function, 𝐽 𝜽, 𝜃; , 
throught the iterative gradient descent algorithm. 

3.2 Upgrade of the damage mapping procedure 
Although the procedure shown in Chapter 2 was proved to be effective for damage mapping, it exhibits 
important limitations. For instance, the parameters of the discriminant function were computed from an 
exhaustive search by constantly repeating steps (3)-(5) of Fig. 1. Such an approach is indeed not practical 
when the space dimension is larger than 2. Therefore, a modification of the logistic regression classifier was 
adapted to solve the referred issue.  

Recall that 𝑧% is either 1, for damaged buildings, or 0, for non-damaged buildings. Accordingly, one of 
the two-terms in the summation of Eq. (5) always cancels for each training sample. Therefore, the 
contribution of a training sample to the function 𝐽 𝜽, 𝜃;  is either ln ℎ𝜽,23 𝒙%  or ln 1 − ℎ𝜽,23 𝒙% . 
Recall also that our target is to avoid the use of training data. Thus, our modification consists of using 
unlabeled samples that will contribute to the summation of Eq. (5) with the both terms, ln ℎ𝜽,23 𝒙%  and 

ln 1 − ℎ𝜽,23 𝒙% ; however, each term will be weighted in the following form: 

𝐽 𝜽, 𝜃; = −
1
𝑁

𝑝% ln ℎ𝜽,23 𝒙% + 1 − 𝑝% ln 1 − ℎ𝜽,23 𝒙%

L

%M<

(6) 

where 𝑝% and 1 − 𝑝%  are the weight factors. The factor 𝑝% is computed from a fragility function using the 
demand 𝑑% that the sample 𝑖 experienced. Using the Logistic Regression with the proposed modification, we 
were able to calibrate a discriminant function for n-dimensional space. In addition, optimization techniques, 
such as the gradient descent algorithm, can be used to solve Eq. (6). Fig. 5 illustrates the discriminant 
function resulted from the solution of Eq. (6) for the same case shown in Chapter 2, the 2011 Tohoku-Oki 
earthquake-tsunami. The results achieved an overall accuracy of 82.2%  and 87.5% using the fragility 
functions provided by Koshimura et al. [33] and Suppasri et al. [34], respectively. The reader can find more 
detail of this work in [32].  

4. Current works
Our modification of the Logistic Regression can be successfully applied only if fragility functions and 
demand parameters are available. The kind of disasters that fulfill this requirement are only earthquakes and 
tsunamis. In our current work, we are trying to implement methods that calibrate discriminant functions only 
from the estimation of the demand parameter. That is to say, fragility functions will not be necessary. With 
this new definition of the problem, the new methods can be applied to other type of disasters, such as floods 
and landslides. It is our belief that is still possible if we assume that a subset of samples whose demand 
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parameter is considerably low is composed of only non-damaged buildings. Then the main problem is to set 
a discriminant function that assigns a damaged state to a second subset of samples composed of samples with 
moderate/large demand parameters.  

5. Conclusions 
We reported two methods for damage mapping that can be implemented to work fully automatic. We have 
demonstrated that the training data used to calibrate supervised machine learning algorithms can be replaced 
with fragility functions and demand parameter maps. Fragility functions have been developed for decades, 
and currently are available in many countries for almost every material. The demand parameter map can also 
be computed from sensor instrumentation and numerical modeling. The method can overcome the 
difficulties encountered in supervised machine learning techniques while maintaining some of their 
advantages (i.e., the capacity to adapt to n-dimensional problems and the possibility of using nonlinear 
discriminant functions). The methods, however, can be applied only to earthquakes and tsunamis. Therefore, 
in our current work, we focus on a new definition of the problem, from which we are relaxing the constraints 
by using only the demand parameter map (i.e., fragility functions will no longer be a part of the constraints). 
The solution of the new problem will provide a damage mapping method that can be applied to other kinds 
of disasters, such as floods and landslides.  
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