

Working Group 2 B Infrastructure: Lifelines, Roads

Presenter: Mag. Eng. Jorge Gallardo Coordinator Group 2B-CISMID

Water and Sewage Systems

Dr. Hugo Scaletti Dr. Luis Quiroz MSc. Ricardo Proaño Eng. Italo Inocente SEDAPAL (MVCS) Eng. Jorge Rucoba Eng. Gustavo Yáñez

Roadways

MSc. Fanny Eto Eng. Bruno Ramírez Bach. Eng. Miguel López Bach. Eng. Rubén Chamorro Bach. Eng. Jhony Yapuchura

Bridges

Dr. Miguel Torres Dr. Rafael Salinas Eng. Richard Cruz Eng. Erick Zavala

Japan - Peru Center for Earthquake Engineering Research and Disaster Mitigation

National University of Engineering

Water and Sewage Systems

2B-1: Survey of lifeline systems (water and sewage), road network and their environment, such as soil condition, supply área, and their Seismic vulnerability in study área.

2B-1: Estudio de los sistemas vitales (agua y alcantarillado), la red de carreteras y su entorno, como el estado del terreno, el área de suministro y su vulnerabilidad sísmica en la zona de estudio.

Study Area

- Study area covers five districts of Lima City, completely Chorrillos and Villa el Salvador districts; and part of Santiago de Surco, San Juan de Miraflores and Villa Maria del Triunfo.
- Five different seismic microzoning zones are included in this studycarea.

Water Distribution Networks

- **Primary** distribution networks
- Secondary distribution networks

Pipeline material

Pipeline diameter

Note: Diameter ranges in mm : $\emptyset_1 < 500, 500 \le \emptyset$ <1000, 1000 $\le \emptyset_3 < 1500$ and 1500 $\le \emptyset_4 \le 1800$

Note: Diameter ranges in mm : $\emptyset_1 < 150, 150 \le \emptyset_2 < 300, 300 \le \emptyset_3 < 450$ and $450 \le \emptyset_4 \le 000$

Water Treatment Plant "La

Storage tanks type and Object ID

 V_1 V_2 V_3 V_4 Note: Volume ranges in m³ : $V_1 > 10000$, $10000 \ge V_2 > 2500$, $2500 \ge V_3 > 400$, $400 \le V_4$

Sewage Collection Networks

- **Primary** Collection networks
- Secondary Collection networks

Pipeline material

Pipeline diameter

40% 38.38 37.59 Primary network 30% 10% 0_1 0_2 0_3 0_4 Note: Diameter ranges in mm : \emptyset_4

Note: Diameter ranges in mm : \emptyset_1 <500, 500 $\leq \emptyset_2$ <1000, 1000 $\leq \emptyset_3$ < 1500 and 1500 $\leq \emptyset_4 \leq 1800$

Wastewater Treatment

2B-2: Development of real-time damage assessment system for infrastructures.

2B-2: Desarrollo de un sistema de Evaluación de daños en tiempo real para infraestructuras y líneas de vida.

Pipeline Fragility Functions Damage Parameter (DP) to pipelines is commonly

Damage Parameter (DP) to pipelines is commonly repair rate (RR), i.e. number of repairs per unit of length (usually in km).

Fragility Function	DP	IM	Туроlоду	Information	Formulation	
O'Rourke and Ayala (1993) NIBS (2004) FEMA (2020)	RR	PG V	Brittle or flexible pipes, for ductile pipelines (Steel, Ductile iron, and PVC) the value is multiplied by 0.3	Empirical (6 earthquakes) Used in HAZUS methodology	$RR \approx 0.0001 \cdot PGV^{2.25}$	
ALA (2001)	RR	PG V	Material type (Unknown, Cast iron, Welded steel, Asbestos cement, Concrete, PVC, Ductile iron) Joint type Soil type Diameter (mm; small 100-300, large 300)	Empirical (12 earthquakes) Database: cast iron (38 data points) followed by steel (13), asbestos cement (10), ductile iron (9), and concrete (2).	$RR = K_1 \cdot 0.002416 \cdot PGV$	

Comparative of Pipeline Fragility Functions

Damage Assessment of Buried Pipelines

Preliminary estimation of IM's (PGA and PGV)

-77.00*

Densie Dent

Pisco, Peru, Earthquake of August 15, 2007 mage Review

Storage Tank Damage

Lateral displacement CR

Leak AC pipe

Replacement of AC pipe for PVC pipe

Break FOFO pipe

Pisco, Peru, Earthquake of August 15, 2007 Damage Review (Update)

Evidence of other geotechnical failures

Total pipe lengths (km)

District	Network	Material				
District		PVC	AC	Cast Iron		
Dises	Prim.	39.83	26.33	8.29		
PISCO	Sec.	21.37	9.64	1.2		
Con Andres	Prim.	8.92	11.46			
San Andres	Sec.	10.00	2.47	1		

	Station	Network	Channel	PGA (cm/s ²)	PGV (cm/2)
F			EW	271.6	39.06
	ICA2	CISMID	NS	334.1	62.27
			UD	192.9	15.05
1	PCN	0.1.4	EW	488.4	23.58
		IGP	NS	457.5	28.03
	1.000		UD	300.2	15.37

Alcantara (2013)

Water service restoration time

Information from surveys (Pisco, Chincha, Ica and Cañete

ZONES	DESCRIPTION	
Zone I	Rock outcrop zones with different degrees of fracturing, gravel and sand deposits of dense to very dense compactness, silt and clay deposits of stiff to very stiff consistency. Environmental vibration periods less than 0.30 s.	-12.14° Soil type of water pipelines in study area
Zone i	Zonas de afloramiento de roca con diferentes grados de fracturación, depósitos de grava y arena de compacidad densa a muy densa, depósitos de limos y arcillas de consistencia rígida a muy rígida. Periodos de vibración ambiental menores a 0.30 s.	-12.16°
7	Deposits of medium to dense sand or medium consistency clays and silts. Environmental vibration periods less than 0.40 s.	
Zone II	Depósitos de arena de compacidad media a densa o arcillas y limos de consistencia media. Periodos de vibración ambiental menores a 0.40 s.	-12.18
Zone III	Sandy deposits of loose to medium compactness, silt and clay deposits of soft to medium consistency. Periods of environmental vibration greater than 0.40 s.	-12.20°
	Depósitos de arena de compacidad suelta a media, depósitos de limos y arcillas de consistencia blanda a media. Periodos de vibración ambiental mayores a 0.40 s.	
Zone IV	Unstable slopes with steep gradients, informal quarries, swampy soil deposits, potentially liquefiable loose eolian sand deposits. Areas with high seismic amplification.	-12.22°
	Taludes inestables con fuerte pendiente, canteras informales, depósitos de suelos pantanosos, depósitos de arenas eólicas de compacidad suelta potencialmente licuables. Zonas con alta amplificación sísmica.	-12.24°
Zana)/	Deposits of rubble and/or waste, anthropic fills inside old mining excavations.	-12.26° – Zone II Zone III Zone IV Zone IV
Zone V	Depósitos de escombros y/o desechos, rellenos antrópicos en el interior de antiguas excavaciones mineras.	-77.04° -77.02° -77.00° -76.98° -76.96° -76.94°

-76.92°

Roadways

2B-3: Evaluation of Seismic vulnerability of road network, and Development of a system to estimate evacuation routes considering the locations of the main hospital and shelters.

ROAD NETWORK

CATEGORY	ELEMENTS	LENGHT	%
AVENUES	7,950	745	21.8%
STREETS	23,821	1,601	46.8%
SHREDS	4,814	464	13.6%
PASSAGES	9,471	578	16.9%
HIGHWAYS	75	28	0.8%
OTHER	68	2	0.1%
TOTAL	46,199	3,417	100.0%

Main Transport Infrastructure

X	
	Located Infrastructure:
XXII	Pedestrian Bridges: 48
121	Vehicular Bridges: 14
	Train Bridge: 04
	Tunnel: 01
	Stations (busses and metro): 15
	Depot (busses and metro): 02
	Peaje: 01
	Terminal: 01
	<u>Metro Line 1:</u>
	At Level: 5.69 Km
-	Ramp – Viaduct: 1.66 Km
	Viaduct: 7.61 Km
5	<u>Metropolitano (BRT)</u> 5.77 Km
	Bike paths: 27.85 Km
	Routes System (166, 5,507.2 Km)

Road Interchange And Main Mass Transit Facilities

	A A A A A	/	Urban infrastructure facilities	MARKETS	POLICE STATION	Health	Schools
	2 Cont		CHORRILLOS	66	7	19	353
			SANTIAGO DE SURCO	54	5	6	335
🖉 Health			SAN JUAN DE MIRAFLORES	90	4	27	85
 C.M. POSTAS 		1 2 4	VILLA EL SALVADOR VILLA MARÍA DEL TRIUNEO	74 80	5 7	18 26	524 462
 C.M.Consultorio 	Huge the so		TOTAL	364	28	96	1759
✓ ● C.S.Internamien		1000 C	A A			3	
V (+) HOSPITAL		Carden of		× 41	100-1		
•			(1730° 0	13			
Market			CB CB CB				
Police Station							
 Schools 							
2							
The Road		States and a states					
Network With							
the Urban							
infrastructure	911 8	8.8.48					
facilities		02	e a a a a a a a a a a a a a a a a a a a	10 m			
		Y					

Restoration Simulation of Water Pipeline System in Lima, Peru

Yoshihisa Maruyama

Chiba University

Damage to Water Supply System after Earthquakes

The water supply system is an extremely important lifeline facility in modern society. Recent earthquakes in Japan occasionally caused severe damage to water distribution pipelines, and water supply was disrupted for weeks in the heavily affected area.

2016 Kumamoto EQ. DIP ϕ 200 mm

2011 Tohoku EQ. SP φ 2400 mm

2011 Tohoku EQ. SP φ 125 mm

Based on the lessons after the Kobe earthquake, the important facilities for water supply systems were retrofitted against a large earthquake. However, the water supply was occasionally disrupted for several days or weeks because of recent large earthquakes.

2016 Kumamoto Earthquake

Kumamoto Castle (April 16, 2016)

Mashiki Town (April 17, 2016)

Recovery Process of Utility Lifelines

No. of disruption

Restoration Process of Water Supply after the 2016 Kumamoto Earthquake, Japan

Water Pipeline in Lima

Percentage of Pipe Material

Asbestos cement pipes (AC) and Polyvinyl chloride pipes (PVC) are mainly used. Ductile iron pipes (HD), High-density polyethylene pipes (PEAD), and Cast iron pipes (FOFO) are rarely used in Lima.

Simulation of Restoration Period

Nojima and Sugito (2003)

1995 Kobe Earthquake

Water supply outage

Restoration period

I: JMA seismic intensity

Functional fragility function

Post-earthquake serviceability curve

Simulation of Restoration Period

Youngs et al. (1997)

Scenario Earthquake

Vulnerability Index of Water Pipeline

Diameter (mm)	Cd	Pipe material	Ср
~ 75	1.6	DIP	0.3
100 ~ 250	1.0	CIP	1.0
300 ~ 450	0.7	VP	1.0
500 ~ 900	0.5	PE	0.3
1000 ~	0.2	ACP	2.5

Vulnerability index

$$V_{pd} = \frac{\sum_{i} \sum_{j} C_{di} C_{pj} L_{ij}}{\sum_{i} \sum_{j} L_{ij}}$$

Considering the difference of V_{pd} of Lima and that of Kobe (0.446), the seismic intensity is adjusted through the JMA seismic intensity to estimate the restoration period.

$$I_{eq} = I_0 + 0.647 \log_{10} \frac{V_{pd}}{0.446}$$

11

Vpd 0.98 - 1.00 Low 1.01 - 1.25 1.26 - 1.50 1.51 - 1.75 1.76 - 2.25 High

Simulated Water Supplying Ratios

Conclusions

The restoration period of water supply pipeline in Lima was estimated based on the equations developed after the 1995 Kobe earthquake.

- ✓ The water supplying ratio of smaller than 80% is estimated in some areas even under the moderate earthquake.
- It takes longer than one week for fully restoration in some districts.

The coefficients to calculate the vulnerability index will be revised considering the pipe characteristics in Lima.

Thank you very much.