

Vulnerabilidad de los Puentes Grado de Daño que sufre un puente como consecuencia de eventos extremos, con períodos de retorno en exceso de la vida útil del puente, tales como: - terremotos - avenidas extremas con socavación - choques de vehículos

- onequee de verneuree
- cargas excepcionales
- acciones de terrorismo

un caudal de 4400 m³/s

Fel Fenómeno El Niño afecta especialmente la costa norte del Perú. Dentro de esta área se ubican las ciudades de Piura y de Castilla, las cuales están separadas por el Río Piura. Estas ciudades tienen un clima semi – árido, típico de la costa norte del Perú, debido a la proximidad a la línea ecuatorial y a la presencia de la corriente marina Humboldt, de aguas frías. Estas características ocasionan una alta temperatura ambiental y la escasez de las precipitaciones, salvo los esporádicos ingresos de las corrientes marinas de las aguas calientes debido al fenómeno de "El Niño".

- Desafortunadamente, Fenómeno El Niño ocurre cada vez con mayor fuerza y el período de retorno es más corto. Entre 1983 y 1998, gran parte del Departamento de Piura, ha soportado dos impactos de este fenómeno, provocando serios daños ya indicados.
- Durante estos dos eventos se han presentado intensas y persistentes precipitaciones, que han sobrepasado las magnitudes anuales hasta entonces registradas. En 1982/83, en la cuenca del río En Piura, las precipitaciones alcanzaron los valores por encima de los 2000 mm y hasta 4000 mm, siendo los valores promedios anuales acumulados entre 60 y 150 mm.

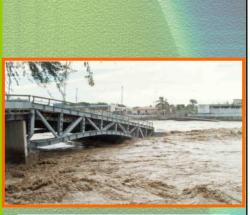
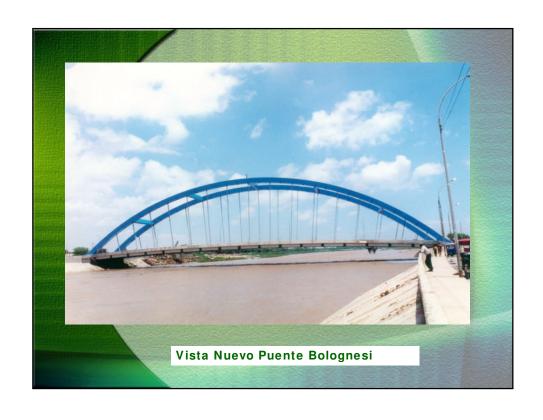
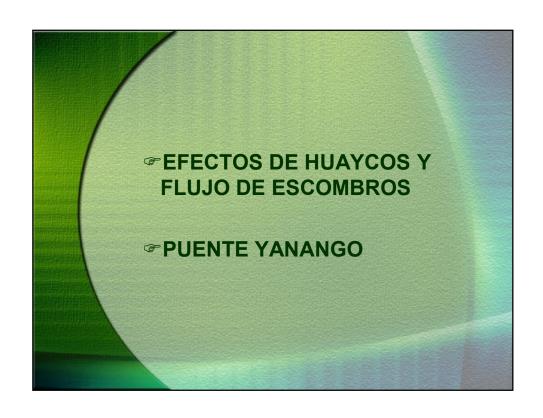
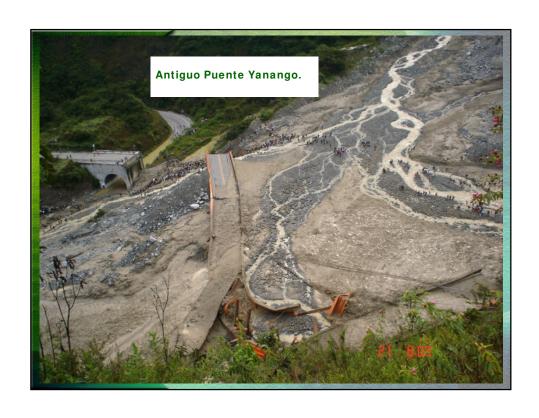
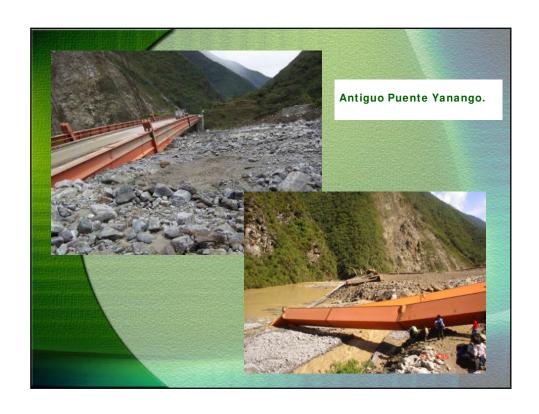
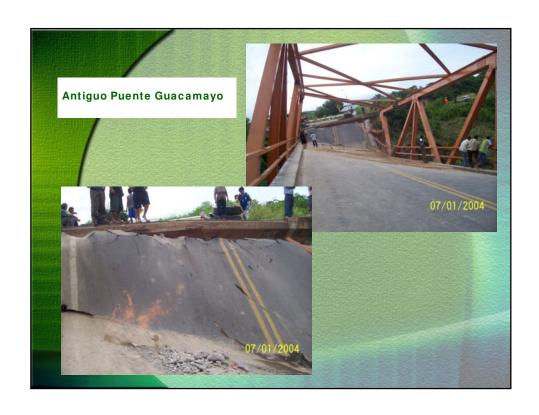




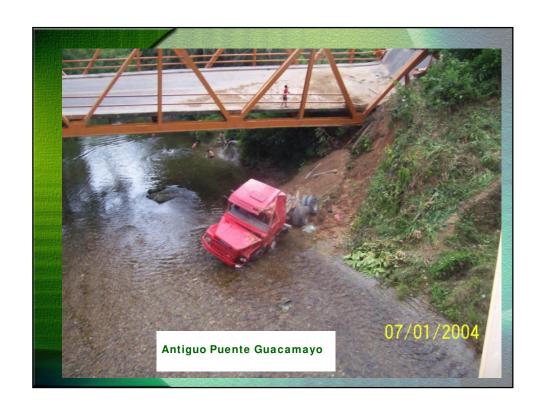
Foto 2.- Vista del puente Viejo, colapsado.

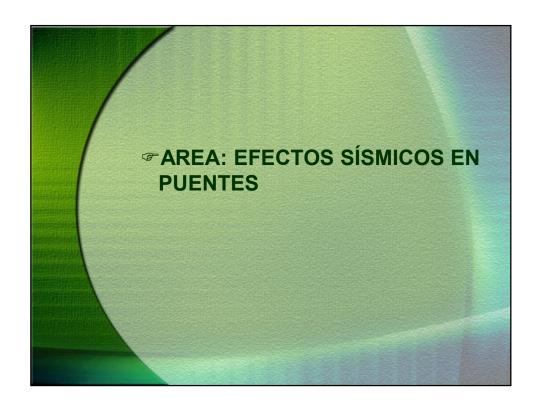


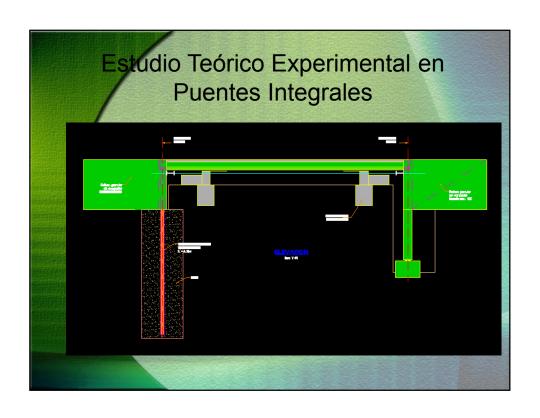


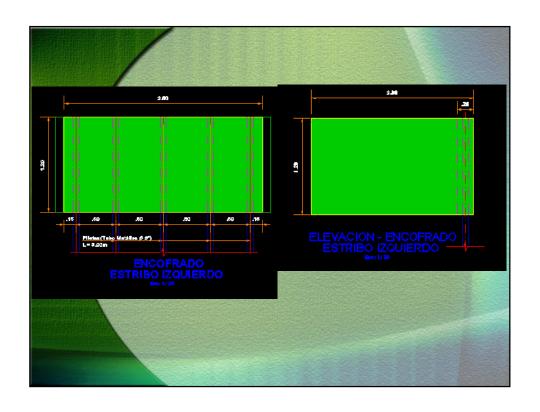


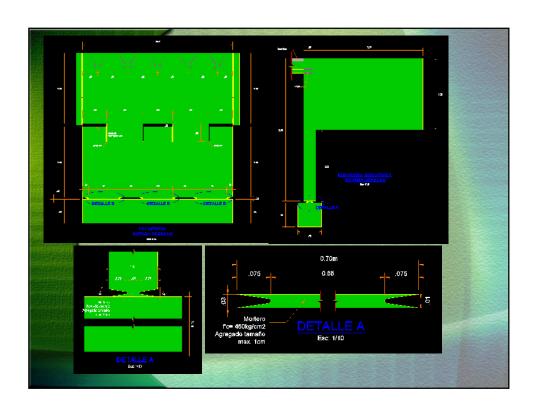


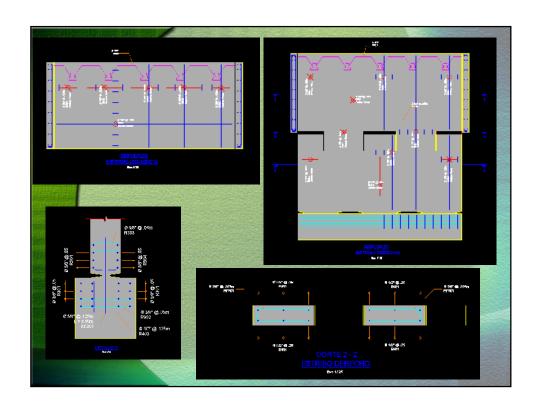


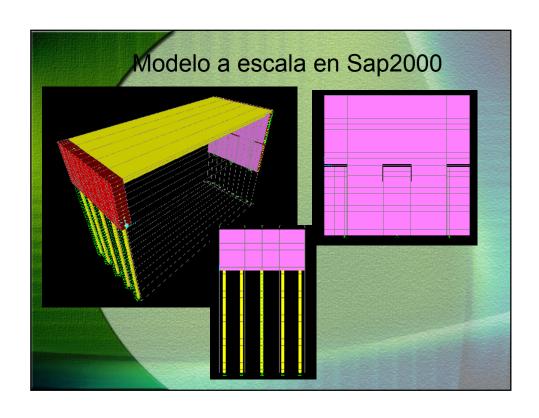












Antecedentes

Se dispone de cierta cantidad de medidores de socavación comerciales cuyo costo limita la medición en sitio de la socavación en la numerosa cantidad de puentes existentes y en construcción en el país; el contar con medidores completos que permitan una medición eficiente de la socavación, evaluará la validez de los valores de socavación estimados según diseño y será un auxilio para la determinación de la vulnerabilidad de un puente ante los procesos erosivos a los que se encuentra sometido a fin de revertir esta vulnerabilidad mediante obras apropiadas.

Alcance

- Flaborar el medidor de socavación.
- Fracer mediciones en sitio en determinado puente, las cuales comprenden no sólo la socavación sino la topografía, variables de flujo, variables de contorno.
- Efectuar el modelamiento hidráulico del tramo de ubicación del puente y estimar la socavación.
- © Calibrar el modelo según las mediciones en sitio obtenidas.
- Las mediciones y el modelamiento serán efectuadas para cada evento de avenida en el que se hagan mediciones.
- Verificar la idoneidad de las fórmulas utilizadas para diseño.
- Proponer que estos medidores sean instalados en la mayor parte de puentes en construcción para verificar de inicio que el diseño es acorde con lo observado en sitio.

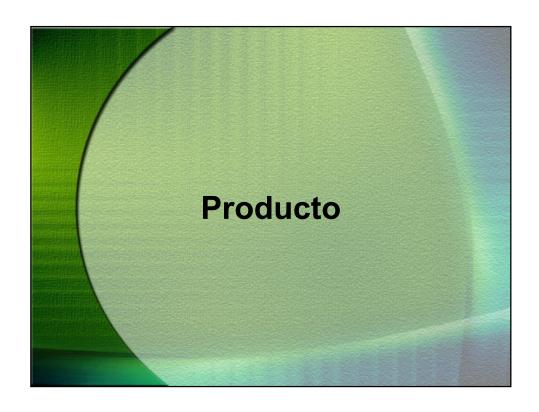
Objetivo

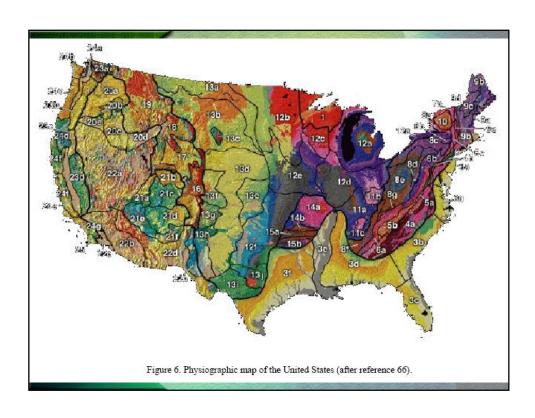
- Felaborar fichas de campo que cubran las características de cauce y cuenca necesarias y suficientes para evaluar la estabilidad de un cauce natural en la ubicación de un puente.
- Proponer que estas fichas sean utilizadas por una brigada del Ministerio de Transportes para evaluar la estabilidad de todos los cruces cauce – puente existentes en el país con una frecuencia de una vez cada dos años.

Antecedentes

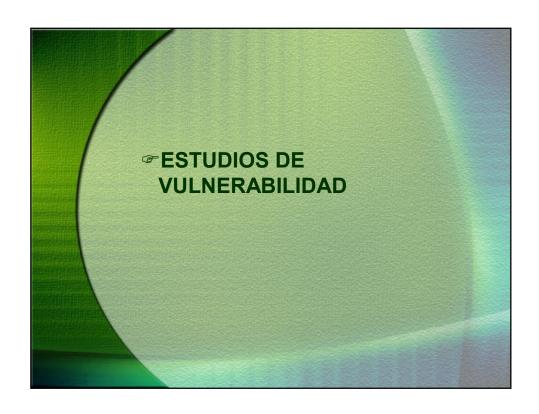
- Se dispone de un trabajo elaborado por Peggy A. Johnson y publicado por la FHWA, el cual recopila los criterios de cierto número de autores para proponer una ficha de campo de uso en Estados Unidos.
- FI trabajo a elaborar en el presente Proyecto de Investigación desea complementar o adecuar tal trabajo para obtener fichas que tengan en cuenta la mayor diversidad de cauces presentes en nuestro país. Las fichas serán utilizadas para evaluar cruces cauce puente reales y observar su idoneidad o sus carencias en la determinación de la estabilidad del cauce en el espacio evaluado.

Alcance


- El producto final será la ficha para evaluación de la estabilidad de un cruce cauce natural – puente, la cual comprenderá los factores que se considera definen esta estabilidad, con valoraciones congruentes, y sobretodo, que se adecúe a los distintos escenarios posibles en la geografía física variada de nuestro país.
- Se evaluará la estabilidad de cruces cauce puente existentes para verificar que la ficha sea adecuada.
- Con la información de campo obtenida, será posible proponer algunas fórmulas empíricas que relacionen el ancho y pendiente del cauce estable según la región fisiográfica en la que será dividido nuestro país.


Algunos parámetros a considerar

- Ubicación con coordenadas GPS del puente
- Uso de los terrenos aledaños
- Tipo de cauce (torrente montañoso, abanico aluvial, río trenzado, río meándrico, etc.)
- Pendiente aproximada del cauce
- Formas de lecho
- Altura y talud de márgenes
- Presencia de vegetación
- Presencia de escombros
- Obras de protección, etc.


Criterios a seguir durante la investigación

- Sólo se necesita la estabilidad del cauce en el corto plazo pues la inspección debe hacerse cada dos años.
- La estabilidad es evaluada en la vecindad inmediata del puente.
- FEI método debe ser rápido y suficientemente preciso, sin mediciones que tomen mucho tiempo.

Table 4. Regional equation parameters for selected physiographic regions in the United States.											
Reference	Region	a	b	с	d	f	g	i	j	w/y (Q)	$w/y(A_D)$
77	Piedmont	-	-	-	-	5.43	0.33	0.54	0.33	N/A	10.06
78	Piedmont	1.46	0.52	0.19	0.42	14.78	0.39	1.18	0.34	7.68	12.53
73	Piedmont	1.36	0.52	0.27	0.37	21.5	0.25	2.09	0.14	5.04	10.29
72	Appalachian Plateau	-	-	-	-	13.19	0.46	0.80	0.37	N/A	16.50
75	Coastal Plain	1.06	0.50	0.11	0.48	9.64	0.38	0.98	0.36	9.64	9.84
73	Coastal Plain	3.15	0.39	0.51	0.28	11.3	0.35	1.93	0.12	6.18	$5.85A_D^{0.23}$
79	Basin and Range	0.96	0.60	0.36	0.31	3.27	0.51	0.79	0.24	2.67Q ^{0.3}	4.14A _D ^{0.27}
79	Pacific Coastal	2.37	0.5	0.15	0.45	12.39	0.43	0.66	0.39	15.8	18.77
42	New England	2.65	0.47	0.62	0.23	10.18	0.50	1.22	0.25	4.08Q ^{0.23}	$8.35A_D^{0.25}$
$aQ^b, y = cQ^d, w =$	fA_D^{δ} , $y = iA_D^{\dagger}$; w/y (vegression coefficient	vidth-to-d									

- La Vulnerabilidad frente a una solicitación de determinadas características es una propiedad intrínseca de cada puente; y por lo tanto independiente por ejemplo de su ubicación en el caso de sismos. Un puente puede experimentar daños sísmicos más severos que otros, a pesar de estar ubicados en la misma zona.
- Un puente puede ser vulnerable pero no estar en riesgo si no se encuentra en un sitio con cierta peligrosidad sísmica.

- Un estudio de vulnerabilidad de puentes incluye la identificación e inspección de las componentes del puente que son susceptibles de fallas y pueden afectar la integridad de la estructura.
- Se requiere preparar Reportes de Estimación de Vulnerabilidad y de Evaluación de la integridad Estructural. También recomendaciones de Repotenciación y/o reemplazo de componentes o unidades estructuralmente vulnerables.
- Se requiere analizar igualmente la integridad de la ruta.

Método del Índice de Vulnerabilidad

Identifica los parámetros más importantes que controlan el daño frente a eventos extremos, los cuales son calificados individualmente en una escala numérica afectada por un factor de peso Wi, que trata de resaltar importancia de un parámetro respecto al resto.

Índice de Vulnerabilidad para Choque de vehículos Lista de Parámetros más importantes que controlan el daño por choque de vehículos

- Ubicación de la estructura principal respecto al nivel del tablero.
- Alineamiento de Acceso de los Puentes
- Ancho de calzada
- Elementos de Protección de la estructura principal.
- Señalización
- capacidad de soporte a desplazamientos longitudinales
- capacidad de soporte a desplazamientos longitudinales
- Resistencia estructural a choques de vehículos
- Altura libre superior de la estructura del puente.

Índice de Vulnerabilidad para Sobre cargas excepcionales

Lista de parámetros más importantes que controlan el daño por Sobrecargas Excepcionales

- Puentes y Rutas con Sistemas de control de Pesaje.
- Sobrecarga de Diseño
- Condición Diseño Estructural
- Pruebas de Carga de Evaluación.
- Rutas Alternas
- Condición Estadística

Índice de Vulnerabilidad para Avenidas extremas con condiciones de socavación

Lista de parámetros más importantes y criterios que controlan el daño por avenidas extremas con condiciones de socavación

<u>Parámetros</u>

Niveles de Socavación

Profundidad y tipo de cimentación Respecto a niveles de socavación

Nivel de Rasante

Longitud del Puente

Varios intermedios

Obras de protección de márgenes Obras de Protección de socavación de Estribos y Pilares Criterios

Observados y Calculadas.

Zapatas superficiales, caissons

pilotes

Margen sobre nivel de aguas

máximas extraordinarias

Suficiencia respecto a avenidas

máximas extraordinarias

Amplitud y número de varios intermedios, y tipo de apoyos

Existencia, necesidad y condición

Existencia, necesidad y condición