


Abstract

Improvement in the estimation of slip-deficit rates and coseismic slips of past earth-
quakes in plate subduction zones is expected to improve the estimation of seismic and
tsunami source models of future megathrust earthquakes. Such improvement is expected
to be realized using viscoelastic models reflecting the 3D crustal structure and assimilating
with geodetic data obtained from onshore and seafloor observation networks. However,
the computation of long-term viscoelastic deformation for a 3D crustal structure requires
extensive computation; thus, simplified models are often used in previous research to
analyze slip-deficit rates.

In this study, we developed a GPU-accelerated viscoelastic analysis method to enable
the computation of many long-term viscoelastic Green’s functions required to conduct
inversion analyses of slip-deficit and coseismic slip distributions of past earthquakes. Here,
an Aggregate-based Correction (ABC) and an Adaptive Time-stepping (ATS) method
were incorporated into the highly tuned GPU-based multigrid finite-element solver to
realize fast computation. The GPU-based solver with ABC and ATS attained 1.22-fold
and 6.02-fold speedup from the state-of-art multigrid solver, respectively, which in total
led to a 22.6-fold speedup from a GPU-based solver with a standard multigrid algorithm.

As an application example of the developed method, we computed 80 long-term vis-
coelastic Green’s functions on a large-scale 3D crustal model of the Nankai region with
4.2× 109 degrees of freedom. These functions were used to estimate slip-deficit and his-
torical coseismic slip on a hypothetical observation dataset. Results show improvement in
the estimation of slip-deficit when compared to results obtained using Green’s functions
under completely relaxed state assumption.
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1 Introduction

Assessing ground motion and tsunami hazards is crucial for mitigating the impact of
future megaquakes. The source models of future megathrust earthquakes have been esti-
mated by analyzing the slip-deficit, slip locked in the plate interface, and coseismic slips
of past earthquakes in plate subduction zones. Seismologists use onshore and seafloor
geodetic observation networks to estimate slip-deficit regions in plate subduction zones
where megathrust earthquakes occur. However, such slip-deficit estimations rely on sim-
plified crustal models and assume an elastic or completely relaxed state (a long time after
an earthquake) of the viscoelastic asthenosphere. Improving slip estimation requires accu-
rate simulations that faithfully replicate the viscoelastic crustal deformation phenomenon.
Therefore, it is crucial to conduct simulations of time-dependent viscoelastic response due
to slip motion on a high-fidelity crustal model.

In a previous study, the viscoelastic crustal deformation analysis was computed using
the Finite Element (FE) method to consider a detailed 3D model of the crustal structure
(Ichimura et al., 2016). To estimate slip distributions, large-scale viscoelastic analyses
are required for a considerable number of cases, around 102−3. Huge analysis cost is
involved in ∼ 102−3 cases of analysis for solving large linear systems of ∼ 109−10 degrees
of freedom (DOF) and ∼ 102−4 time steps with dt ∼ 10 days. Since the analysis cost
of a 3D high-fidelity model is high, viscoelastic response after an earthquake has been
performed using simplified crustal models (Noda et al., 2018; Sherrill and Johnson, 2021).
In this regard, 3D crustal deformation analysis of large-scale models was enabled by
advancements in computational methods (Fujita et al., 2017) and improvements in the
capabilities of high-performance computing (HPC) systems. For current HPC systems,
Yamaguchi et al. (2017) developed a fast solver that offloads a large amount of crustal
deformation computation to graphics processing units (GPUs), further improving the
computational performance. Recent studies have significantly improved the computation
of viscoelastic crustal deformation by predicting the numerical solution from previous
simulation steps (Fujita et al., 2022; Murakami et al., 2023).

Despite significant efforts, conducting numerical simulations of high-fidelity crustal de-
formation for long-term viscoelastic response remains computationally extensive. There-
fore, in this study, we further accelerate the computation of long-term viscoelastic defor-
mation by incorporating an Aggregation-based Correction (ABC) and an Adaptive Time-
Stepping (ATS) method. The ABC enhances the high-accuracy initial guess in solving
the large linear system. On the other hand, the ATS method reduces the number of sim-
ulation steps by dynamically adjusting the time increment considering the viscoelastic
relaxation phenomenon. We measured the performance of the proposed methods by com-
puting viscoelastic deformation on a large-scale 3D crustal model of the Nankai Trough
subduction zone. This region experienced recurring megathrust earthquakes and is ex-
pected to experience a megaquake in the near future (Fukushima et al., 2023; Central
Disaster Management Council). As a result of the performance measurements, the GPU-
based solver with ABC attained a 1.22-fold speedup from the state-of-art solver, while
the ATS method achieved a simulation speedup of 6.02-fold.

As an application example of the developed method, we computed 80 long-term vis-
coelastic Green’s functions for the large-scale 3D crustal model of the Nankai region with
4.2×109 degrees of freedom using 56 A100 GPUs. Such results were used to estimate the
slip-deficit rate and historical coseismic slip distribution given synthetic observation data.
Slip-deficit estimation results show that long-term viscoelastic inversion outperforms the
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inversion assuming a completely relaxed state.
The following is the structure of this paper. Section 2 describes the target viscoelastic

crustal deformation problem and inversion analysis. Section 3 describes the development
of the GPU-based solver with the proposed methods, and Section 4 describes the per-
formance improvement by these methods. Section 5 describes an application example of
the developed method computing long-term viscoelastic Green’s functions for the Nankai
Trough subduction zone. Finally, Section 6 summarizes this study.

2 Target problem

Our target problem is to estimate the elastic/viscoelastic crustal response on a detailed
3D crustal model. Section 2.1 shows the details of the Finite Element (FE) formulation
for coseismic and post-seismic crustal deformation based on previous studies. The FE
method was selected because of its ability to deal with complex geometries, such as the
three-dimensional crustal structure. At the end of Section 2.1, we present an algorithm
for calculating the time-history viscoelastic crustal deformation by iteratively solving
large-scale linear systems derived from the FE model.

Section 2.2 describes the construction of a high-fidelity FE model designed for complex
crustal geometries. This FE model results in a large linear system of 109−10 DOF, which is
solved iteratively in 102−4 time steps. However, conventional computers cannot perform
such a large-scale computation. Therefore, Section 3 introduces a method to solve large-
scale linear systems efficiently.

The viscoelastic response due to a fault slip distribution can be estimated based on
the finite-element formulation. However, in real applications, the viscoelastic response is
known at certain observation stations on the crustal surface, but fault slip distribution is
unknown. Therefore, conducting an inversion analysis becomes necessary to estimate the
slip distribution along the plate interface and improve our understanding of future earth-
quake potential. In that sense, Section 2.3 shows the formulation of inversion analyses to
estimate the distribution of coseismic slip and slip-deficit rate.

2.1 Finite element formulation

2.1.1 Coseismic crustal deformation

Given the time scale of coseismic crustal deformation due to a fault slip, which typically
takes a few minutes, we can consider the crust (including the lithosphere and astheno-
sphere) as a linear elastic solid. Here, we analyze the static elastic response considering
a prescribed slip distribution on the plate interface. The governing equations for this
analysis are provided below,

σij,j + fi = 0 (1)

σij = λϵkkδij + 2µϵij (2)

ϵij =
1
2
(ui,j + uj,i)

where σij and fi are stress tensor, and force due to a fault slip. δij, ϵij, ui are Kronecker
delta, strain tensor and displacement, respectively. λ and µ are Lame’s constants. We
used the FE method to solve the above governing equations. By discretizing Eq. (1) with
quadratic tetrahedral elements, we obtain,

Ku0 = f0
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where

K =
∑
e

∫
Ωe

BTDBdΩe

Here, K is a symmetric positive definite matrix, and u0 and f0 are an unknown
displacement vector and a known force vector.

∑
e denotes an “assembly operator” that

adds element contributions to the appropriate locations in K. D is the elasticity matrix
for isotropic material and B is strain-displacement transformation matrix. D is defined
in a matrix form of Eq. (2) as,

D =


λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


In the case of quadratic tetrahedral elements, the strain-displacement transformation

matrix is defined as B = [B1B2...B10], with

Bi =



∂Ni

∂x
0 0

0 ∂Ni

∂y
0

0 0 ∂Ni

∂z

∂Ni

∂y
∂Ni

∂x
0

0 ∂Ni

∂z
∂Ni

∂y

∂Ni

∂z
0 ∂Ni

∂x


, N =



N1

N2

N3

N4

N5

N6

N7

N8

N9

N10


=



r1(2r1 − 1)
r2(2r2 − 1)
r3(2r3 − 1)
r4(2r4 − 1)

4r1r2
4r2r3
4r1r3
4r1r4
4r2r4
4r3r4


, r4 = 1− r1 − r2 − r3

Here x, y, z and r1, r2, r3 are global and natural coordinate systems, respectively. The
global derivatives in matrix Bi can be obtained by utilizing Jacobian matrix J as follows:

∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

 = J−1


∂Ni

∂r1

∂Ni

∂r2

∂Ni

∂r3

 , J =


∂x
∂r1

∂y
∂r1

∂z
∂r1

∂x
∂r2

∂y
∂r2

∂z
∂r2

∂x
∂r3

∂y
∂r3

∂z
∂r3


Regarding the force vector f0 due to a fault slip, it can be defined using the split-node

technique (Melosh and Raefsky, 1981) as:

f0 = −
[
Kupper

(
δuf

2

)
+Klower

(
−δuf

2

)]
where δuf , Kupper and Klower are the slip on the plate interface and stiffness matrices
consisting of the element stiffness matrices in the upper/lower sides of the plate interface.

The coseismic crustal deformation is obtained by solving Ku0 = f0. Then, the stress
due to fault slip forces is obtained by σ0 = DBu0, which is evaluated at Gaussian points
in each element.
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2.1.2 Post-seismic crustal deformation

Linear viscoelastic models have been widely used to simulate the post-seismic crustal re-
laxation phenomenon. Although nonlinear models may offer improved accuracy in certain
cases, linear viscoelasticity remains valuable in geodetic inversion due to its superposition
property. This study adopts the Maxwell body as a preferred linear viscoelastic model.
However, alternative linear viscoelastic models can be implemented following a similar
formulation.

The Maxwell model is used for simulating the gradual relaxation of stresses in the
Earth’s crust following a fault slip as:

σij,j + fi = 0

σ̇ij = λϵ̇kkδij + 2µϵ̇ij − µ
η

(
σij − 1

3
σkkδij

)
(3)

ϵij =
1
2
(ui,j + uj,i)

where η is viscosity. To solve the above governing equations, we employ the same al-
gorithm as the Geophysical Finite Element Simulation Tool, a FE package designed for
geophysical and other applications provided by the NASA QuakeSim project (Parker
et al., 2008).

The post-seismic crustal deformation at i-th time step is obtained by solving Kvδui =
δf i, with viscoelastic linear system Kv defined as:

Kv =
∑
e

∫
Ωe

BTDvBdΩe (4)

Dv = (D−1 + αdtβ′)−1

βi = D−1Aσi

where σi is the stress at i-th time step, which is evaluated at Gaussian points in each
element and α is a parameter ranging from 0 to 1 (α = 1 for full implicit analysis). βi

represents the Maxwell viscoelastic strain rate, and β′ its Jacobian matrix. In the case
of linear viscosity, A is defined as follows:

A =
µ

3η


2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3


The right-hand side vector δf i is defined in the following manner:

δf i = f0 + ρg
∑
e

∫
δΩe

NT (ui, n̂g)n̂gdδΩe +
∑
e

∫
Ωe

BT (dtDvβi − σi)dΩe (5)

where ρ, g, n̂g and (, ) are density, magnitude of gravity, the normal vector of gravity
force, and dot product. Now, we can define Algorithm 1 based on the above formulations
to illustrate the crustal deformation analysis.
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Algorithm 1 Analysis of viscoelastic crustal deformation due to a fault slip. The com-
putation is conducted for N t time steps. Superscript ()i denotes a variable in the i-th
time step. In each time step, we solve a linear system with the initial solution δui, which
is set using the data-driven predictor (detailed in Section 3).

1. Coseismic crustal deformation analysis

set i = 0
compute f0 from given fault slip δuf ▷ use split-node technique
solve Ku0 = f0 ▷ use Algorithm 2
σ0 ← DBu0

2. Post-seismic crustal deformation analysis

while i < N t do
compute δf i ▷ use Eq. (5)
predict solution δui based on previous steps
solve Kvδui = δf i ▷ use Algorithm 2
ui+1 ← ui + δui ▷ update displacement field
σi+1 ← σi +Dv(Bδui − dtβi) ▷ update stress field
i← i+ 1

end while

2.2 High-fidelity finite element model

The FE model for the Nankai Trough subduction zone was constructed using the Japan
integrated velocity structure model version 1 (JIVSM) (Koketsu et al., 2009, 2012), which
has been proposed for earthquake hazard assessments conducted by the Japanese gov-
ernment. To be more specific, the high-fidelity FE model was constructed from the
layer boundaries of the subsurface structure model in JIVSM, along with the viscoelastic
oceanic mantle and viscoelastic mantle wedge set following Sherrill and Johnson (2021)
(all other layers are considered to be elastic).

In viscoelastic response analysis, higher-order elements should be used to accurately
evaluate the stress in a crustal structure with complex geometry. In the following lines,
we will elaborate on efficiently meshing complex geometries using higher-order elements
and the application of fault slip in the constructed model.

2.2.1 Finite element mesh construction for parallel computing

The construction of the finite element mesh is conducted in two stages. First, a linear
tetrahedral mesh is created. Second, the mesh is partitioned into domains for parallel
computing, and a quadratic tetrahedral mesh is constructed for each domain. In the first
stage, we define a background mesh composed of voxel elements for the target region
(see Fig. 1a). Then, the layer boundary geometry is approximated to avoid generating
poor aspect-ratio elements (see Fig. 1b). Although this figure shows voxel elements of the
same size, the inefficiently small elements can be enlarged (e.g., merging four 2D voxel
elements into a new element or merging eight voxel elements in 3D). At the end of this
stage, linear elements are generated from the background mesh and the approximated
ground surface (or layer boundary) using Delaunay triangulation (see Fig. 1c).

In the second stage, we use METIS (Karypis and Kumar, 1998) to perform domain
decomposition for parallel computation, with processes working concurrently and com-
municating, to solve a system of equations by the FE method. We utilize Message Passing
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Background mesh

Layer 1

(a) (b)

(c)

Fig. 1: Schematic view depicting the first stage of FE mesh generation. (a) Target
domain is covered by a uniform background mesh. (b) The boundary geometries are
slightly simplified to maintain the mesh quality. (c) Linear tetrahedral elements are
generated from background mesh and layer boundary.

Interface (MPI) for communication between parallel processes. Then, we use the linear
tetrahedral elements (defined for the coarse model) to generate quadratic tetrahedral
elements for the fine target model.

Finally, the information of coarse and fine models, boundary conditions, process com-
munication, and mapping between fine-coarse models is stored in Hierarchical Data For-
mat 5 (HDF5, 2017). The model partitions are stored in HDF5 format because it is
specifically designed to support parallel I/O operations, enabling efficient reading and
writing of large datasets in parallel computing environments.

2.2.2 Application of fault slip in crustal model

The fault slips are expected to occur at the boundary between the top of the subducting
oceanic crust and the bottom of the continental crust in JIVSM, particularly in the
context of subduction earthquakes. Although fault slips do not always occur at this
boundary, we assume that the relative motion between two plates is accommodated on
this plate interface. Fig. 2 shows a 3D visualization of the plate interface and the input
slip applied at some points on this boundary.

Note that the specific fault slip is defined in a single direction. However, if we aim
to consider the actual motion, we can input a fault slip that is perpendicular to this
defined direction. In cases where the fault slip or part of its distribution extends beyond
the trench or trough, the slip is forcibly set to zero. However, it is crucial to ensure
continuity in the distribution of fault slips in all other cases to prevent the accumulation
of stress over time.
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Fig. 2: 3D visualization of the plate interface (top of subducting oceanic crust) and
application of a specific fault slip at some points.

2.3 Inversion analysis formulation

Inversion analysis methods are crucial in estimating slip distributions on a plate interface
from surface crustal deformation. This section elaborates on two inversion methods:
coseismic inversion and viscoelastic inversion.

Coseismic inversion focuses on determining the slip distribution that occurred in an
earthquake, assuming an elastic response of the Earth’s crust. The viscoelastic inver-
sion method offers a more comprehensive approach by considering the time-dependent
response of the Earth’s crust. Unlike coseismic inversion, viscoelastic inversion accounts
for the post-seismic relaxation and inter-seismic slip-deficit over longer time scales. This
method leads to a more accurate estimation of slip distributions and a better understand-
ing of the crust’s response to seismic events (Li et al., 2015).

Completely relaxed inversion is a specific case of viscoelastic inversion, where the
time after the earthquake is assumed to be infinite. This approach uses crustal surface
deformation to estimate inter-seismic slip-deficit rates assuming a completely relaxed
state of the crust.

2.3.1 Coseismic inversion method

In order to estimate the distribution of coseismic slip, the plate interface is divided into
“m” unit faults, each represented by a basis function that defines its shape. For the basis
function Hj (Heaviside function defined for j-th unit slip), we use the normalized third-
order bicubic B-splines (Yabuki and Matsu’ura, 1992). These B-spline-shaped unit slips
are applied on the plate boundary along a structured grid (see Fig. 9 of Section 5.1). The
slip direction is defined opposite to subduction based on previous studies (Hori et al.,
2021; Murakami et al., 2022). Subsequently, the surface responses (Green’s functions)
due to unit faults are computed. Using a combination of “m” basis functions, the spatial
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slip distribution on the plate interface can be represented as:

w(ξ) =
m∑
j=1

Hj(ξ)aj (6)

Using Green’s functions Ge
ij (elastic surface displacement on observation point i for

unit slip Hj), we can define the observation equation by arranging displacements at all
stations in a vector form:

d = Gea+ e

where d is crustal deformation data at observation points on the surface and a is a set
of model parameters. Here, we assume that error e obeys Gaussian distribution with a
mean value of 0 and covariance matrix E.

The inversion process may encounter instability due to the limited number of obser-
vation data compared to the number of unit faults and potential errors in the observation
data and crustal model. Regularization techniques are employed to ensure stability and
obtain reliable solutions by incorporating a priori information on the slip distribution
(smoothness). By imposing a smooth constraint on the slip distribution, we ensure a
realistic and smooth slip variation along the fault. In this way, the model parameters, a,
can be determined by minimizing the objective function:

s(a) = (d−Ga)TE−1(d−Ga) + α2aTLTLa (7)

where L is a matrix representing the smoothness constraint on the slip distribution, and
α represents a parameter to control the smoothness constraint (Yabuki and Matsu’ura,
1992).

Based on Tomita et al. (2020) and Bayes’ theorem, the prior constraint can be repre-
sented in the form of a probability density function as follows:

p(a;α2|d) = c(2πσ2)−
N+M

2 |E|−
1
2

∣∣α2LTL
∣∣ 12 exp [− 1

2σ2
s(a)

]
where α, c, and σ2 are the hyper-parameter adjusting the spatial smoothing, a normalizing
factor independent of the unknowns, and a scale factor for the covariance matrix E. The
ABIC value is obtained by the following equation:

ABIC(α2) = N log s(a∗)− log
∣∣α2LTL

∣∣+ log
∣∣GTE−1G+ α2LTL

∣∣+ C

with

a∗ = (GTE−1G+ α2LTL)−1GTE−1d

where N and C are the number of observation data and a constant term independent
of α2. To find the optimal value of α2, we can employ a conjugate direction method to
iteratively search the minimum ABIC value.

Once the value of α2 is found, we can obtain the best estimate of a by minimizing
the objective function described in Eq. (7). In this optimization process, we can consider
the coseismic slip as purely opposite to the subduction direction by setting non-negative
constraints in the objective function minimization (ai ≥ 0).
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2.3.2 Viscoelastic inversion method

In general, the viscoelastic surface displacement u caused by a slip motion on a plate
interface Σ at the rate ẇ that started at time t = tk can be written with the following
equation (Fukahata et al., 2004):

ui(x, t) =

∫ t

tk

∫
Σ

Gi(x, t− τ ; ξ, 0)ẇ(ξ, τ)dξdτ (8)

where Gi(x, t; ξ, τ) denotes the i-th component of the viscoelastic Green’s function and
indicates viscoelastic displacement at a point x at a time t on the surface, due to a fault
slip at point ξ at time τ on the plate interface Σ, and tk is timing of fault slip.

In this study, we considered the occurrence of historical earthquakes or previous co-
seismic slip distributions (w(ξ, τ) ̸= 0 if t < tk, k > 1). The slip motion wk of k-th
earthquake can be decomposed into slip motion due to a coseismic slip wc

k and due to a
steady slip motion ẇs

k after k-th earthquake (Noda et al., 2018):

w(ξ, τ) = wc(ξ, τ) + ws(ξ, τ), τ > tNeq

wc(ξ, τ) =

Neq∑
k=1

H(τ − tk)a
c
k(ξ), ws(ξ, τ) = (τ − tNeq)ȧ

s
Neq

(ξ) +

Neq−1∑
k=1

(tk+1 − tk)ȧ
s
k(ξ)

where H represents a Heaviside function and Neq is the number of earthquakes to consider
in viscoelastic inversion. According to this decomposition, we can rewrite Eq. (8) as
follows:

ui(x, t) =

Neq∑
k=1

∫
Σ

Gi(x, t− tk; ξ, 0)a
c
k(ξ)dξ +∫ t

t1

∫
Σ

Gi(x, t− τ ; ξ, 0)ȧsk(ξ)dξdτ, t > tNeq (9)

Note that we consider that the steady slip motion ȧsk(ξ) changes after an earthquake
due to the redistribution of stresses and the release of accumulated strain. Therefore,
the temporal integral in Eq. (9) must be integrated by intervals of [tk, tk+1] for k =
(1, 2, ..., Neq − 1) and the last interval [tNeq , t]. Then, we can define the viscoelastic
Green’s function related to ack(ξ) and ȧsk(ξ) as follows:

Gc
k(x, t; ξ, 0) =

{
0, t < tk

Gi(x, t− tk; ξ, 0), t > tk

Gs
k(x, t; ξ, 0) =


0, t < tk∫ t

tk
Gi(x, t− τ ; ξ, 0)dτ, tk < t < tk+1

ck =
∫ tk+1

tk
Gi(x, t− τ ; ξ, 0)dτ, t > tk+1

Using viscoelastic Green’s functions Gv, the observation equation for the coseismic
slip and steady slip motion can be expressed in a vector form:

d = Gva+ e =
[
Gc

1 Gs
1 · · · Gc

Neq
Gs

Neq

]


ac
1

ȧs
1
...

ac
Neq

ȧs
Neq

+ e (10)
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Like the coseismic inversion method, we impose spatial smoothing to the slip dis-
tributions and minimize the objective function by Eq. (7). Note that Gs

k coefficients
are typically large, while ȧs

k parameters are relatively small compared to coseismic array
values. Although Eq. (10) was derived considering absolute displacements relative to the
time just before the first coseismic slip, we can change the reference time by subtract-
ing the relative displacement and the corresponding Green’s functions at the time when
observation data becomes available.

3 Development of GPU-accelerated methods

In the previous section, we detailed the construction of a FE model and defined slips on a
plate interface to conduct crustal deformation simulation. This simulation plays a crucial
role in seismic inversion analysis. However, the computation involves huge analysis cost
reflecting heterogeneous 3D structure for solving a large linear system of ∼ 109−10 DOF
for ∼ 102−3 fault slips and ∼ 102−4 time steps with dt ∼ 10 days. The high computational
cost highlights the importance of employing efficient algorithms and parallel computing
strategies to address this challenge effectively.

Iterative solvers are preferred over direct solvers in current high-performance comput-
ing (HPC) environments due to their scalability and ability to distribute computational
tasks across multiple processors efficiently. They leverage parallel computing to achieve
faster convergence, making them well-suited for solving large-scale linear systems in com-
plex and computationally demanding simulations.

In an iterative solver, there are two approaches to reduce the number of iterations
or the solver time. The first approach is to provide a high-accuracy initial guess that
brings the solution closer to convergence. The second approach is to employ an efficient
preconditioner that improves the convergence rate, resulting in faster computation and
reduced solver time.

To improve the initial guess, a Data-Driven Predictor (DDP) was proposed by Fujita
et al. (2022) for estimating a high-accuracy initial solution, achieving a 3.19-fold speedup.
Regarding preconditioners, the Multigrid preconditioner is effective because it reduces the
number of iterations by estimating the solution at a coarser grid, where the computation
cost is cheaper. The Data-Driven Predictor and Multigrid solver will be detailed in
sections 3.1 and 3.2, respectively.

We propose two methods to enhance the computation speedup: Aggregation-based
Correction (ABC) and Adaptive Time-stepping (ATS). The ABC method enhances the
high-accuracy initial guess by eliminating the low-frequency error inherent in the DDP
approach. On the other hand, the ATS method reduces the number of simulation steps,
denoted as N t, by increasing the time step dt when the viscoelastic relaxation decays.
Section 3.3 and 3.4 will elaborate on the ABC and ATS methods, respectively.

3.1 Data-driven predictor

In post-seismic crustal deformation analysis, we solve a system over N t time steps using
an initial solution, as shown in Algorithm 1. To enhance convergence in the iterative
solver, we implement a predictor that utilizes previous steps’ solutions to estimate the
initial solution for the current time step. For example, a backward finite difference ap-
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proximation can be employed as an initial predictor using three previous steps:

δui
p3 = 2ui−1 − 3ui−2 + ui−3

To enhance the accuracy of initial guess, Fujita et al. (2022) have introduced the
concept of dynamic mode decomposition (DMD) to estimate the solution at the current
time step. DMD defines an operator that captures the system’s time evolution utilizing
information from s previous time steps.

By denoting the difference of initial predictor from the correct solution δui as xi =
δui−δui

p3, and using the data from the previous s steps, we constructXi−1 = [xi−1xi−2 . . .

xi−s]. Utilizing this matrix, the time-evolution operator C is defined as Xi−1 = CXi−2

(in general Y = CX). The initial solution δui
DDP that considers the modes estimated in

local space (or block) and local time is computed as,

xi = Cxi−1 (in general y = Cx)

δui
DDP = δui

p3 +C(δui−1 − δui−1
p3 )

In this data-driven method, given data sets X,Y of sizes m×s (the number of DOF in
a block × previous time steps) where X is the input and Y is the corresponding output,
the response y to an input x is computed by

y = Cx, C = YR−1QT

In contrast to DMD, Cx is calculated by the modified Gram-Schmidt orthonormaliza-
tion. To provide more detail, Q and R are obtained from orthogonalization of X = QR
by Gram-Schmidt method (Q and R sizes are m× s and s× s, respectively). Replacing
this expression in Y = CX and isolating C = YR−1QT. However, the direct implemen-
tation of this method is not suitable for GPUs with small memory capacity because it
requires keeping matrices X,Y and another temporary arrays on memory during orthog-
onalization. Therefore, Murakami et al. (2023) proposed a random matrix R̂ of size n×m
(n ≪ m) to reduce the size of the given data set X. This modification makes the data-
driven predictor suitable for GPU computing, reducing computational cost and memory
usage.

As described above, the data-driven method is computed in local space (small do-
mains or blocks). This approach allows us to avoid global communication, as we can
independently estimate the displacement increment for each small domain using time-
history data. Here, we partition the domain in each MPI process into nonoverlapping
small domains using METIS (Karypis and Kumar, 1998). The partitioning can be seen
in Fig. 3.

3.2 Fast and Scalable Finite Element solver

In crustal deformation analysis, most of the computation time is dedicated to solving the
large system outlined in Algorithm 1. To address this, a fast and scalable solver that can
effectively leverage the capabilities of HPC systems is required. Since multigrid-based
iterative solvers satisfy these requirements, a conjugate gradient solver with a geometric
multigrid preconditioner proved effective in viscoelastic analysis (Ichimura et al., 2016).

In that study, a single coarse grid level was constructed geometrically using linear
tetrahedral elements (the same second-order elements’ shape but without the edge nodes).
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Fig. 3: MPI domain divided into small domains (blocks).

With structured grids, adding geometric coarse grid levels (i.e., equally spaced coarsening)
and solving at this level often leads to an approximate solution close to the exact solution.
However, for 3D unstructured grids, another geometric grid level cannot be used (i.e.,
there is no concept of equally spaced coarsening). Therefore, Fujita et al. (2017) proposed
a solver with an integrated geometric/algebraic multigrid preconditioner, which resulted
in a significant speedup of 2.18-fold compared to using only the geometric multigrid
approach. This solver is shown in Algorithm 2.

The main loop of the iterative solver begins at line 3 (outer loop). In order to improve
the convergence, a standard preconditioner is utilized at line 4 by transforming the original
linear system into an equivalent one that is easier to solve. Here the equivalent system
B is computed from the block diagonal of K (3x3 block Jacobi preconditioner).

Lines 6-12 correspond to the efficient three-level multigrid preconditioner, which in-
volves operations of single-precision arrays. The integration of this preconditioner in a
solver attained an 11.1-fold speedup compared to using only a standard preconditioner
(Fujita et al., 2017). Like the standard preconditioner, an equivalent system is constructed
with three levels: fine level, first coarse level, and second coarse level.

The fine-level system is obtained from the model with quadratic tetrahedral elements.
In the first coarse level, the same model is used without the edge nodes, which is the
model with linear tetrahedral elements. The second coarse level system is constructed
from the first coarse level using the algebraic multigrid method. Restriction R̄j and
prolongation P̄j operators are defined to map arrays between levels (e.g., z̄1 ⇐ R̄1z̄0 and
z̄0 ⇐ P̄1z̄1 to map from level 0 to 1 and vice versa). Similarly, the stiffness matrix of a
different level is related to another level using these operators (e.g., K̄1 = R̄1K̄0P̄1 and
K̄2 = R̄2K̄1P̄2).

In line 8, the system of the second coarse level K̄2z̄2 = r̄2 is solved using a conjugate
gradient iteration. We refer to this iteration as inner loop level 2. Then, we prolongate
the solution to the first coarse level and use it as an initial guess to solve K̄1z̄1 = r̄1 by
a conjugate gradient iteration, we refer to this iteration as inner loop level 1. Finally,
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Algorithm 2 Fast and scalable iterative solver to obtain solution δu. (¯) represents
FP32 variables, while the others are in FP64. The input variables are K, K̄j, R̄j, P̄j, δu, f
and ϵ. Here, K̄j, R̄j and P̄j are global stiffness matrix, restriction and prolongation
operator related to multigrid level j. All computation steps in this solver, except MPI
synchronization and scalar coefficient operations, are performed on GPUs.

1: r⇐ f −Kδu ▷ synchronize r by MPI communication
2: β ⇐ 0, i⇐ 1
3: while ||r||2/||f ||2 > ϵ do ▷ outer loop
4: z⇐ B−1r
5: r̄0 ⇐ r, z̄0 ⇐ z ▷ to single precision
6: r̄1, z̄1 ⇐ R̄1r̄0, R̄1z̄0 ▷ restrict to level 1
7: r̄2, z̄2 ⇐ R̄2r̄1, R̄2z̄1 ▷ restrict to level 2
8: Solve K̄2z̄2 = r̄2 ▷ inner loop level 2, solve with Algorithm 3
9: z̄1 ⇐ P̄2z̄2 ▷ prolongate to level 1
10: Solve K̄1z̄1 = r̄1 ▷ inner loop level 1, solve with Algorithm 3
11: z̄0 ⇐ P̄1z̄1 ▷ prolongate to level 0
12: Solve K̄0z̄0 = r̄0 ▷ inner loop level 0, solve with Algorithm 3
13: z⇐ z̄0 ▷ to double precision
14: if i > 1 then
15: γ ⇐ (z,q) ▷ synchronize γ by MPI communication
16: β ⇐ γ/ρ
17: end if
18: p⇐ z+ βp
19: q⇐ Kp ▷ synchronize q by MPI communication
20: ρ⇐ (z, r) ▷ synchronize ρ by MPI communication
21: γ ⇐ (p,q) ▷ synchronize γ by MPI communication
22: α⇐ ρ/γ
23: r⇐ r− αq
24: δu⇐ δu+ αp
25: i⇐ i+ 1
26: end while

we prolongate the solution to the fine level system and use it as an initial guess to solve
K̄z̄ = r̄ by a conjugate gradient iteration. We refer to this iteration as inner loop level 0.
The conjugate gradient solver used in inner loops is shown in Algorithm 3.

At lines 5 and 13 of Algorithm 2, we convert double-precision variables to single pre-
cision and vice versa so that computations within inner loops of multigrid preconditioner
are performed using single-precision arithmetic. As a result, the computation cost is
shifted from the outer loop to the multigrid inner loops, enabling double-precision results
computed mostly with single-precision computation. This shift halves the memory foot-
print, memory transfer size, and communication size. If lines from 5 to 13 are skipped,
the solver becomes a standard preconditioned conjugate gradient solver. We refer to this
as standard solver (Ichimura et al., 2014).

In line 1 and line 19 of Algorithm 2, we use the element-by-element (EBE) method for
computing sparse matrix-vector products. In the EBE method, matrix-vector products
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are calculated by summing element-wise matrix-vector products as

q =
∑
e

QeKeQ
T
e p

where Ke and Qe indicate the element stiffness matrix and mapping between local and
global node numbers. Instead of storing the element stiffness matrix in memory (e.g.,
Compressed Row Storage CRS format), the matrix-vector product is computed using
nodal coordinates and material properties every time. This method is especially effec-
tive when targeting architectures with high arithmetic capability per memory bandwidth
capability, such as GPU-based systems.

Note that in inner loops, we also compute sparse matrix-vector products (see line 10
of Algorithm 3). For efficient computation, we utilized arrays in CRS format for inner
loops 1 and 2, while the EBE method was used for inner loop 0.

Algorithm 3 Conjugate gradient iteration with block Jacobi preconditioner used to solve
K̄j z̄j = r̄j at inner loop level j in Algorithm 2. ϵ̄ and Nmax are the tolerance for the
relative error and the maximum loop iterations. B̄j is the block Jacobi matrix. Matrix-
vector multiplication K̄jp̄ is computed using the EBE method for inner loop j = 0, while
for j = 1, 2 is computed using arrays in Compressed Row Storage format.

1: ē⇐ r̄j − K̄j z̄j
2: β̄ ⇐ 0, i⇐ 1
3: while ||ē||2/||̄r||2 > ϵ̄ and i < Nmax do
4: x̄⇐ B̄−1

j ē
5: ρ̄a ⇐ (x̄, ē) ▷ synchronize ρ̄a by MPI communication
6: if i > 1 then
7: β̄ ⇐ ρ̄a/ρ̄b
8: end if
9: p̄⇐ x̄+ β̄p̄
10: q̄⇐ K̄jp̄ ▷ synchronize q̄ by MPI communication
11: γ̄ ⇐ (p̄, q̄) ▷ synchronize γ̄ by MPI communication
12: ᾱ⇐ ρ̄a/γ̄
13: ρ̄b ⇐ ρ̄a
14: ē⇐ ē− ᾱq̄
15: z̄j ⇐ z̄j + ᾱp̄
16: i⇐ i+ 1
17: end while

3.3 Acceleration with Aggregation-based correction (ABC)

To improve the efficiency of the state-of-the-art solver, we analyzed the accuracy of the
initial solution predicted by the DDP method, eDDP = δui

DDP − δui
sol. By identifying

and addressing the sources of error, the prediction of the initial solution can be improved,
resulting in enhanced speed and performance of the iterative solver.

Fig. 4 shows the error in data-driven prediction for displacement in the Z direction,
grouped according to blocks. At first glance, there is evident a significant low-frequency
error within the blocks used in data-driven prediction. This trend of low-frequency error
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is also observed in the X and Y directions. Therefore, removing the significant low-
frequency error will accelerate the solver. Additionally, the figure includes a zoomed-in
view of the error within a specific block, allowing for better visibility of the high-frequency
error components.

Fig. 4: Low-frequency and high-frequency error in data-driven prediction of initial guess.

Considering this observation, the error in data-driven prediction at i-th time step can
be decomposed into two components: low-frequency (LF) error and high-frequency (HF)
error:

eDDP = eLF + eHF = δui
DDP − δui

sol (11)

We can employ a multigrid approach to address the significant low-frequency error
present within the blocks used in the DDP method. This approach iteratively corrects
the error by solving the problem on a coarse grid, effectively capturing the low-frequency
components. For instance, applying the multigrid method solved low-frequency errors
in large-scale problems effectively (Fujita et al., 2017). In implementing the multigrid
method to eliminate low-frequency errors in blocks, we should consider the block structure
when constructing the coarse grid. Specifically, each block in the fine grid should represent
a new node in the coarse grid. In this way, we can improve the initial solution at low
computational cost by aggressively coarsening the system from the number of DOF in
the fine level to the number of DOF in the coarse block level (e.g., from 109−10DOF to
104−5DOF).

Among multigrid methods, we chose the aggregation-based multigrid method because
it is suitable to remove low-frequency errors within aggregates or blocks. This correction
is achieved by grouping a set of nodes into aggregates equivalent to constructing the
coarse block level (Vanek et al., 1996). To prevent any confusion of terms, in the context
of multigrid, we used the term “aggregates” to refer to the blocks used in the DDP
method, while in domain partitioning, we used the term “small domain”.

We named the aggregation-based multigrid method designed to correct the low-
frequency error in the data-driven prediction as Aggregation-based Correction (ABC).
The implementation of this method can be seen in Algorithm 4. Note that the ABC
method, which removes low-frequency error, is applied after data-driven prediction and
before solving Kvδui = δf i, where the high-frequency error is removed. In line 5 of Algo-
rithm 4, we solve the system at the coarse block level and obtain eb. Then, we prolongate
it to the fine level and remove the low-frequency error eLF .
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Algorithm 4 Aggregate-based correction to remove low-frequency error at i-th time step.
Here, Kb,Rb, and Pb represent the global stiffness matrix, restriction, and prolongation
operator related to the coarse block level.

1: predict solution δui based on previous steps ▷ step from Algorithm 1
2: *** Correction starts ***
3: r⇐ Kvδui − δf i ▷ compute residual
4: rb ⇐ Rbr ▷ restrict to coarse block level
5: solve Kbeb = rb ▷ solve by Algorithm 3
6: eLF ⇐ Pbeb ▷ prolongate to fine level
7: δui ⇐ δui − eLF ▷ remove low-frequency error
8: *** Correction ends ***
9: solve Kvδui = δf i ▷ continue with Algorithm 1

3.4 Acceleration with Adaptive time-stepping (ATS)

Considering the governing equations (1),(2), and (3), the viscoelastic response decays
exponentially with time as illustrated in Fig. 5.

Fig. 5: Decay of viscoelastic response over time. Dots represent the solution in a loga-
rithmic time spacing.

Considering this characteristic, previous studies considered logarithmic time spacing
with shorter time steps after the earthquake. For instance, Johnson and Tebo (2018)
analyzed the elastic/viscoelastic response of a simplified 2D model using this type of
spacing. However, the application of this approach to a more complex 3D heterogeneous
model has yet to be investigated. This study introduces an Adaptive Time-stepping
method (ATS) to perform 3D viscoelastic simulations efficiently.

If we increase the time step dt during the simulation, the viscoelastic linear system Kv

will change as described by Eq. (4) resulting in a challenging task of modifying a large
linear system at each time step. However, we can exploit the linear viscoelastic behavior
to separate the time-dependent systems conveniently, as described below:

Kv =
Nmat∑
k=1

K0
k +

Nmat∑
k=1

1

1 + αdtµk

ηk

Kv
k (12)

with

K0
k =

∑
e

∫
Ωe

BTD0
kBdΩe, Kv

k =
∑
e

∫
Ωe

BTDv
kBdΩe
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where Nmat is the number of layers with different materials. The linear viscoelasticity
matrix for k-th material, is given by:

Dk = D0
k +

1

1 + αdtµk

ηk

Dv
k (13)

for elements in k-th elastic layer,

D0
k =


λk + 2µk λk λk 0 0 0

λk λk + 2µk λk 0 0 0
λk λk λk + 2µk 0 0 0
0 0 0 µk 0 0
0 0 0 0 µk 0
0 0 0 0 0 µk

 ,Dv
k = 0

and in the case of elements in k-th viscoelastic layer,

D0
k =

3λk + 2µk

3


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,Dv
k =

µk

3


4 −2 −2 0 0 0
−2 4 −2 0 0 0
−2 −2 4 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3


In this way, we can adapt dt depending on the viscoelastic response. Since the vis-

coelastic response decays exponentially with time, we propose the following expression:

dt = dt0e
c×i, c =

dtf − dt0
ttotal

where i is the i-th time step and c is the growth rate defined by the initial time step dt0
and the final time step dtf at the end of simulation, which occurs at time ttotal. In the
implementation of ATS, we update not only the system Kv according to the time step dt
as described in Eq. (12), but also the auxiliary arrays required when solving the system
Kvδu = fv in Algorithm 2 and Algorithm 3.

For the computation in the fine level with double precision (e.g., q⇐ Kp and z⇐ B−1r),
we update the linear viscoelasticity matrix according to the time step dt following Eq. (13)
and compute using the EBE method. To update the three-level multigrid preconditioner
arrays (K̄, K̄1, K̄2), we first precompute the non-time-dependent and time-dependent
systems as shown in Eq.(12). Then, we updated the linear system Kv by only adding the
precomputed systems in each time step. A similar process can be followed to update the
block Jacobi preconditioner arrays (B̄, B̄1, B̄2).

Implementing the ATS method may seem straightforward initially, but it involves sig-
nificant computation when working with large arrays in each time step. This implication
can result in increased computation time. To address this challenge, we leverage the
computational power of GPUs using OpenACC. By offloading the computation to GPUs,
we can effectively accelerate the implementation and reduce its overall computation time.
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4 Performance measurement

4.1 System environment for computation

We perform computations for viscoelastic crustal deformation and measure performance
on a parallel GPU-based cluster at the Earthquake Research Institute of The University of
Tokyo. The cluster comprises fifteen nodes, each node equipped with a 2.80 GHz 24-core
AMD EPYC 7402P CPU and four NVIDIA Tesla A100 GPUs. This high-performance
computing setup enables us to perform viscoelastic simulations efficiently. To evaluate
the efficiency of our proposed methods, we measured their performance using a maximum
number of 56 A100 GPUs.

4.2 3D high-fidelity crustal model

To demonstrate the utility of the proposed methods in viscoelastic analysis on a high-
fidelity crustal structure model, we calculate post-seismic viscoelastic crustal deformation
off the coast of the Nankai region of Japan due to a fault slip. The Nankai region is one
of the plate subduction zones where large earthquakes occur.

A 3D finite-element model for computing Green’s function is constructed based on the
JIVSM (Koketsu et al., 2009, 2012). The crustal structure data are projected onto the
cartesian coordinate system, originating at P (135°E, 33.5°N) and the ellipsoidal height
0 m. The target area domain is set between -1248 km < x < 1248 km, -1248 km < y <
1248 km, and -1100 km < z. Dirichlet boundary conditions were imposed on the bottom
and sides of the finite-element model.

Fig. 6a provides an overview of the 3D FE model for Nankai Trough subduction zone.
In Fig. 6b, a close-up view of the FE model illustrates the discretization of the target
crustal structure model using second-order tetrahedral elements. Additionally, Fig. 6c
shows the profile section A-B crossing at origin P, allowing a better appreciation of the
layers within the model. The material properties of these layers were obtained from the
JIVSM and are summarized in Table 1.

Table 1: Material properties of layers in Fig. 6a. Vp, Vs, ρ, and η are primary wave
velocity, secondary wave velocity, density, and viscosity, respectively. ID indicates the
layer number ID in JIVSM.

Layer name ID Vp (m/s) Vs (m/s) ρ (kg/m3) η (Pa·s)

Eurasian plate 1-16 2100− 6400 700− 3800 2050− 2800 —
Mantle wedge (elastic) 17 7500 4500 3200 —
Mantle wedge (viscoelastic) 17 7500 4500 3200 2× 1018

Philippine sea plate 18-19 5000− 6800 2900− 4000 2400− 2900 —
Oceanic mantle (elastic) 20 8000 4700 3200 —
Oceanic mantle (viscoelastic) 20 8000 4700 3200 10× 1018

Pacific plate (PAC) 21-22 5400− 6500 2800− 3500 2600− 2800 —
Oceanic mantle (PAC) 23 8100 4600 3400 —
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(a) Overview

(b) Close-up view

(c) Profile section A-B

Fig. 6: 3D Finite-element model constructed for Nankai Trough subduction zone. (a)
Overview, (b) close-up view, and (c) Profile section A-B. The black rectangle in profile
A-B indicates the area shown in close-up view.

4.3 Performance measurement of ABC

To evaluate the performance of ABC, we keep the minimum element size to 2000 m and
run simulations for one hundred time steps with dt = 648, 000s. The resulting 3D finite-
element model consisted of 2.8×108 DOF. We partitioned the model into 16 MPI domains
to efficiently deal with the computational demand, enabling parallel computation across
16 GPUs.

The performance was measured from time steps 51 to 100 because the data-driven
predictor needs information of previous steps to predict the initial guess of the current
time step. By removing the low-frequency error in the initial guess of DDP, the number
of iterations is reduced by 1.46-fold compared with the multigrid solver without ABC
(see Table 2). As a result, the elapsed time per time step decreased to 1.18s, which is
1.22 times faster compared to using the state-of-the-art solver without ABC (see Table
3).
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Table 2: Average elapsed time per step of each solver for time steps 51-100.

Solver name
Average elapsed time per step (s) Speedup

Total Solver Predictor Correction Total Solver

Multigrid + DDP 1.44 1.32 0.030 - 1.00 1.00
Multigrid+DDP+ABC 1.18 0.97 0.027 0.050 1.22 1.36

Table 3: Average required number of iterations per step for time steps 51-100.

Solver name
Average number of iterations per step
Outer Inner 0 Inner 1 Inner 2

Multigrid + DDP 6.3 23.4 71.8 326.3
Multigrid+DDP+ABC 4.3 16.1 45.6 276.5

4.4 Performance measurement of ATS

To evaluate the performance of the ATS method, we conducted simulations with a min-
imum element size of 500 m over one hundred years. The resulting 3D finite-element
model consisted of 4.2 × 109 DOF. In this case, we partitioned the model into 56 MPI
domains, enabling parallel computation across 56 GPUs.

We considered 4800 time steps for fixed time-stepping simulations using a constant
time step of dt = 648, 000 s. In contrast, the number of steps for ATS simulation is only
537 with an initial time step dt0 = 648, 000 s and a final time step dtf = 32× dt0. Table
4 presents the simulation elapsed time and speedup for four different simulations with
standard solver, multigrid solver, multigrid solver with data-driven predictor, and incor-
porating the ATS method. Elapsed times for simulations with standard and multigrid
solvers are estimated by taking the average of the first 100 steps.

The ATS method demonstrated superior efficiency, reducing the number of time steps
by 8.93-fold, which resulted in a significant 6.02-fold reduction in simulation elapsed
time. Note that the reduction in time steps does not directly correspond to an equivalent
reduction in elapsed time due to additional operations involved in updating simulation
arrays (explained in Section 3.4).

In this study, we conducted simulations to estimate viscoelastic crustal deformation
given a single fault slip vector per simulation. However, this computation can be enhanced
by simultaneously solving for multiple vectors, which reduces the amount of memory
access per vector. Recently, Murakami et al. (2023) developed a GPU solver designed
explicitly for this purpose, which achieved an impressive 8.6-fold speedup compared to
the multigrid solver. Therefore, we anticipate more significant speed improvements when
incorporating this feature into our ATS implementation.

Table 4: Elapsed time for 100-year crustal deformation simulation.

Solver name
Elapsed time (min)

Speedup
Total (steps) Solver Predictor

Standard solver* 31152(4800) 31121 - 1.00
Multigrid solver* 1140.5(4800) 1130.5 - 27.31
Multigrid + DDP 371.1(4800) 318.4 4.01 86.21

Multigrid+DDP+ATS 61.60(537) 48.29 4.00 505.7
Notes: Elapsed times for simulations using standard and multigrid solver

are estimated by taking the average of first 100 steps.
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The varying time step dt can lead to error accumulation over time when using adaptive
time-stepping. This error accumulation can result in deviations from the exact solution,
compromising the accuracy of the simulation. To analyze this deviation, we examine a
more rigorous scenario by extending the simulation time to 350 years and setting dtf =
96 × dt0. Then, we compare the solution obtained from the ATS simulation with the
solution of a reference simulation using a fixed time step. Fig. 7a shows the magnitude
of horizontal displacement at the end of a 350-year simulation. Fig. 7b illustrates the
difference of ATS displacement from the reference displacement on the surface at the end
of the simulation. This difference is quantified as the error, denoted by uATS−uref , at the
end of the simulation. Note that the maximum magnitude of the error is 1 mm, which is
smaller than the typical precision range of surface deformation measurements (see Table
5).

(a) Displacement magnitude (m) (b) Difference (mm)

Fig. 7: (a) Horizontal displacement magnitude at the end of 350-year simulation and (b)
Displacement difference between the solution of ATS method and the reference solution
using a fixed time-stepping.

5 Application example

This section shows an application example to demonstrate the potential use of the de-
veloped long-term viscoelastic computation method. In previous studies, elastic or com-
pletely relaxed inversion methods have often been conducted to estimate slip-deficit dis-
tribution using data collected at specific times (Noda et al., 2018; Hori et al., 2021).
However, we can improve the slip-deficit estimation accuracy by using the time-history
viscoelastic response captured in geodetic observations. Furthermore, such time-history
observation data might include information from historical earthquake slips. In this ap-
plication example, we use the time-history viscoelastic Green’s functions enabled by the
developed method to do inversions of the slip-deficit as well as the coseismic slip of past
earthquakes and compare the slip-deficit estimated by using Green’s functions assuming
the completely relaxed state.
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In the first test, we use synthetic observation data collected 350 years after the oc-
currence of coseismic slip. With this data, we compare the estimation of slip-deficit
distribution through viscoelastic inversion with the estimation obtained through com-
pletely relaxed inversion. The estimation is acceptable for both cases because a com-
pletely relaxed state is valid (after 350 years). In addition, coseismic slip is estimated by
viscoelastic inversion.

In the second test, we simulated the coseismic slip during the 1944 and 1946 earth-
quakes in the Nankai region as a fused slip distribution in 1945 (Japan Cabinet Office,
2015). Synthetic observation data is recorded from 2006 to 2023 when onshore and
seafloor geodetic observation is available. Using this data, we compare the estimation of
slip-deficit distribution through viscoelastic inversion with the estimation through com-
pletely relaxed inversion. Additionally, viscoelastic inversion estimated coseismic slip
with synthetic observation data that captured viscoelastic relaxation around 80 years
after the earthquake.

We generated synthetic observation data for both tests by utilizing coseismic slip and
inter-seismic slip-deficit distributions obtained from Japan Cabinet Office (2015) and
Hori et al. (2021), respectively. We defined 80 unit slip parameters to represent each slip
distribution and combined them as described in Eq. (6).

The combination of 80 parameters for coseismic slip is illustrated in Fig. 8a, while
Fig. 8b depicts the combination of 80 parameters for inter-seismic slip-deficit. Therefore,
we consider 160 input parameters to represent both slip distributions. The details of the
80 unit slips used in the combination are explained in Section 5.1.

(a) Reference coseismic slip. (b) Reference inter-seismic slip-deficit.

Fig. 8: Input reference slip distributions for synthetic tests.

To quantify the accuracy of the inversion methods, we use the misfit value r defined
as:

r =
||dcalc − dobs||2
||dobs||2

Here, || · ||2 denotes L2 norm, and dobs is the synthetic observation displacement. The
vector dcalc = Gacalc is the estimated displacement, where acalc is the estimated model
parameters from the inversion analysis.
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To conduct the inversion analysis mentioned above, we compute long-term viscoelastic
Green’s functions for 350 years in the Nankai Trough subduction zone using the efficient
ATS method proposed in this study.

5.1 Computation of Green’s functions

From the examination result of Murakami et al. (2022), an element size of around 500 m
is required for numerical convergence of the results; thus, elements are refined such that
the element size in the horizontal direction is 500 m in the range of -448 km < x < 448
km, -448 km < y < 448 km, and (h(x, y)−10) km < z < (h(x, y)+10) km. Here, h(x, y)
is the z-coordinate of the plate boundary (for the region beyond the trench axis, h(x, y)
represents the z-coordinate of the ground surface). The generated FE model comprises
1.04×109 quadratic tetrahedral elements with 4.2×109 DOF. To efficiently deal with the
computational demand, we partitioned the model into 56 MPI domains enabling parallel
computation across 56 GPUs.

To compute Green’s functions in the Nankai Trough subduction zone, we positioned
80 structured grid nodes along the plate boundary of our constructed model. These nodes
are spaced in a 50 km grid, and we specifically selected nodes within a depth limit of
50 km. Then, we introduce unit slips centered at these nodes with third-order B-spline
shape as basis function (Yabuki and Matsu’ura, 1992). Considering one direction of slip
on each unit slip, we computed 80 Green’s functions in total. Fig. 9 shows an example
of a unit slip distribution and the location of 80 unit slips applied on the plate interface
in the Nankai Trough subduction zone. The unit slip or part of its distribution located
beyond the trench or Trough axis is set forcibly to zero.

The computation of 80 viscoelastic Green’s functions using the FE model with 4.2×109
DOF for 350 years entails a high computational cost. However, the analysis time is re-
duced by employing the proposed adaptive time-stepping method and GPU implemen-
tation. This approach enabled the computation of all Green’s functions in 2.96 × 105 s
(3.42 days).

Finally, we output the crustal deformation response (Green’s functions), due to unit
slips, at the location of onshore and seafloor observation stations. We then transform
coordinates from the crustal structure model to the global standard geodetic reference
following Hori et al. (2021). The coordinates of the observation stations were obtained
from Yokota et al. (2016) and are shown in Fig. 10.

5.2 Estimating slip-deficit using data from 350 years after past
megaquake

In this application, we utilize long-term viscoelastic Green’s functions to estimate inter-
seismic slip-deficit distribution from synthetic observation data recorded 333-350 years
after the last major earthquake. Here, we compare the conventional case using the com-
pletely relaxed inversion with the case using the time-history viscoelastic Green’s func-
tions for inversion.

The time-history data for 350 years was generated following Eq. (10), by multiplying
the viscoelastic Green’s functions with the input model parameters derived from the
reference coseismic slip and slip-deficit. Fig. 11 shows the vertical displacement on the
surface generated from the input model parameters over 350 years for two observation
stations: Station 144 (onshore) and Station 200 (seafloor). Note that the surface vertical
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Fig. 9: Example of unit slip input in Nankai Trough subduction zone and location of 80
unit slips defined in direction opposite to subduction.

Fig. 10: Location of onshore and seafloor observation stations. Only the station IDs of
seafloor observation and onshore station 144 are shown.

displacement in seafloor station 144 is more significant than in onshore station 200, but
the viscoelastic relaxation decays over time in both stations. In addition, we introduce
Gaussian noise attributed to the precision of geodetic observation instruments, which is
shown in Table 5. The observation data is generated after a significant time has elapsed
since the occurrence of the coseismic slip (within the range of 333-350 years), where the
assumption of a completely relaxed state is valid.
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Fig. 11: Vertical displacement of onshore station 144 and seafloor station 200 for 350
years relative to year 0 (right before earthquake occurrence).

Table 5: Precision assumed for geodetic observation in inter-seismic periods.

Onshore observation Seafloor observation

Stations IDs 1-196 197-211
Precision H: 4mm/year and V: 8mm/year H: 5mm/year and V: 20mm/year

Notes: H and V indicate horizontal and vertical components, respectively.

The observation data generated in 333-350 years with the consideration of error due to
the precision of geodetic instruments can be seen in Fig. 12. To consider a realistic case,
we assume that observation data is available from year 333 and generate data relative
to this year’s displacement. Note that the magnitude of the vertical displacement rate is
around 5 mm/year, comparable with the geodetic instrument’s precision. Therefore, we
also include horizontal components in the inversion analysis.

Fig. 12: Vertical displacement of onshore station 144 and seafloor station 200 for 333-350
years relative to year 333 (when observation data is available).

To estimate the slip-deficit distribution through the completely relaxed inversion, we
calculate the difference between the displacement at year 350 and the displacement at
year 345, which effectively neglects the viscous relaxation due to the coseismic slip during
this period. This approach allows us to estimate only 80 model parameters associated
with the slip-deficit. On the other hand, for the viscoelastic inversion, we consider all
the time history data in the interval of 333-350 years and estimate 160 model parameters
related to the coseismic slip and slip-deficit.
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Fig. 13a shows the results of slip-deficit estimation. Both inversion methods yield
reliable estimations, but the viscoelastic inversion outperforms the completely relaxed in-
version (see the difference from reference slip-deficit Fig. 13b). In quantitative terms, the
viscoelastic inversion achieves a misfit value of 5.05%, while the completely relaxed inver-
sion exhibits a misfit value of 17.0%. These results were expected since the completely
relaxed state is valid after a prolonged period following the coseismic slip.

(a) Slip-deficit distribution (b) Difference

Fig. 13: Estimation results of slip-deficit distribution (350 years after earthquake). The
slip-deficit and difference from reference distribution are shown from left to right for
Completely Relaxed inversion (Above) and Viscoelastic inversion (Bottom).

From the estimated model parameters related to the slip-deficit, we plot the horizontal
surface displacement rate detected with the data around 350 years after the earthquake
(see Fig. 14). The red arrows in Fig. 14a and Fig. 14b represent the displacement rate
calculated from completely relaxed and viscoelastic inversion, respectively. Compared to
the vertical components, the horizontal displacement rate is larger in magnitude (around
4 cm/year).
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(a) Completely relaxed inversion

(b) Viscoelastic inversion

Fig. 14: Observed surface deformation rate at observation stations (black arrow) and
calculated deformation rate (red arrow) at 80 years after earthquake.

In addition to estimating the slip-deficit, the viscoelastic inversion enables the esti-
mation of coseismic slip. Despite the relaxation that occurred over time and the effect
of coseismic slip after 350 years is small, we were able to obtain a rough slip estimation.
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Fig. 15a shows the estimated distribution of the 350-year-ago coseismic slip. Note that
the difference from the reference coseismic slip is significant (see Fig. 15b). The estimated
moment magnitude (Mw) is 8.61, near the magnitude of reference slip (8.54), indicating
that the earthquake’s magnitude can be estimated. It is important to clarify that the
Nankai region has experienced multiple megaquakes in the last 350 years (megathrust
earthquakes occurred in 1707, 1854, 1944, and 1946). However, for this application, we
only considered a single megathrust earthquake.

(a) Estimated coseismic slip (b) Difference

Fig. 15: Coseismic slip distribution estimated from long-term viscoelastic inversion con-
sidering synthetic data during 333-350 years at observation location.

5.3 Estimating slip-deficit using data from 80 years after past
megaquake

In this application, we consider a realistic case of an earthquake in 1945, and only geodetic
data is available from 2006 to 2023. Using synthetic observation data generated in this
period, we utilize long-term viscoelastic Green’s functions to estimate inter-seismic slip-
deficit distribution.

Like the previous application, the time-history data from 1945 to 2023 was generated
following Eq. (10). Fig. 16 shows the vertical displacement on the surface generated
from the input model parameters over 78 years for Station 144 (onshore) and Station
200 (seafloor). The observation data generated from 2006 to 2023 with the consideration
of error due to the precision of geodetic instruments can be seen in Fig. 17. Assuming
that observation data is available from 2006, we generated data relative to this year’s
displacement.

To conduct a completely relaxed inversion, we calculate the difference between the
displacement in 2018 and the displacement in 2023. Using this data, we estimated 80
model parameters associated with the slip-deficit. On the other hand, for the viscoelastic
inversion, we consider all the time history data from 2006 to 2023 years and estimate 160
model parameters related to the coseismic slip and slip-deficit.
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Fig. 16: Vertical displacement of onshore station 144 and seafloor station 200 for 1945-
2023 years relative to year 1945 (right before earthquake occurrence).

Fig. 17: Vertical displacement of onshore station 144 and seafloor station 200 for 2006-
2023 years relative to year 2006 (when observation data is available)

Fig. 18a shows the results of slip-deficit estimation. Once again, the viscoelastic
inversion outperforms the completely relaxed inversion (see Fig. 18b). In quantitative
terms, the viscoelastic inversion achieves a misfit value of 4.45%, while the completely
relaxed inversion exhibits a misfit value of 33.8%. The larger misfit value in the com-
pletely relaxed inversion is due to its omission of the viscous relaxation recorded in the
observation data. Fig. 19 shows the horizontal surface displacement rate obtained from
the estimated model parameters related to the slip-deficit. The red arrows in Fig. 19a
and Fig. 19b represent the displacement rate calculated from completely relaxed and
viscoelastic inversion, respectively.

Fig. 20a shows the estimated distribution of the 80-year-ago coseismic slip. Note that
the difference from the reference coseismic slip is small (see Fig. 20b). The estimated
moment magnitude (Mw) is 8.57, almost the same as that of the reference slip (8.54),
indicating that the earthquake’s magnitude is accurately estimated.

The main results of the application example are presented in Table 6. The viscoelastic
inversion outperforms the completely relaxed inversion. That is because the viscoelastic
inversion incorporates the time-history data rather than relying on a difference calculation
at two specific times.

Furthermore, the coseismic slip can only be estimated through the viscoelastic inver-
sion. It yields better results when utilizing observation data around 80 years after the
earthquake than data around 350 years.
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(a) Slip-deficit distribution (b) Difference

Fig. 18: Estimation results of slip-deficit distribution (78 years after earthquake). The
slip-deficit and difference from reference distribution are shown from left to right for
Completely Relaxed inversion (Above) and Viscoelastic inversion (Bottom).

Table 6: Comparison of completely relaxed inversion and viscoelastic inversion results.

Completely relaxed inversion Viscoelastic inversion

350-year-ago
earthquake

Misfit 17.0% 5.05%
Mw — 8.61

80-year-ago
earthquake

Misfit 33.8% 4.45%
Mw — 8.57
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(a) Completely relaxed inversion

(b) Viscoelastic inversion

Fig. 19: Observed surface deformation rate at observation stations (black arrow) and
calculated deformation rate (red arrow) at 80 years after earthquake.
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(a) Estimated coseismic slip (b) Difference

Fig. 20: Coseismic slip distribution estimated from long-term viscoelastic inversion con-
sidering synthetic data during 2006-2023 years at observation location.

6 Conclusions

In this study, we developed an Aggregate-based Correction (ABC) to improve the initial
guess in solving the viscoelastic crustal deformation problem and an Adaptive Time-
Stepping (ATS) method suitable for viscoelastic analysis. We constructed a large-scale
3D crustal model of 4.2 × 109 DOF to evaluate the proposed methods for the Nankai
Trough subduction zone. The implementation of the ABC yielded a remarkable 1.47-fold
reduction in the number of solver iterations compared to the state-of-the-art solver. With
a small increase in memory footprint, the ATS method led to a 6.02-fold speedup from
the highly tuned GPU-based multigrid solver with Data-Driven Predictor. The speedup
obtained in this study is expected to improve earthquake source models on 3D crustal
structures.

By enabling the computation of long-term viscoelastic deformation in practical time,
we calculated 80 viscoelastic Green’s functions for the 3D crustal model using 56 A100
GPUs. As an application example, we performed inversion analysis to estimate inter-
seismic slip-deficit and historical earthquake slip distribution using a synthetic observa-
tion dataset. Inversion considering long-term viscoelastic response yielded more accurate
predictions for inter-seismic slip-deficit. In our future work, we plan to explore integrat-
ing additional data sources, such as leveling survey data and tidal gauge data, to enhance
the estimation of coseismic slip and slip-deficit. Furthermore, we intend to incorporate
unknown parameters that account for crustal properties and additional slip distributions.
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